52 research outputs found

    CNTF gene therapy confers lifelong neuroprotection in a mouse model of human retinitis pigmentosa.

    No full text
    The long-term outcome of neuroprotection as a therapeutic strategy for preventing cell death in neurodegenerative disorders remains unknown, primarily due to slow disease progression and the inherent difficulty of assessing neuronal survival in vivo. Employing a murine model of retinal disease, we demonstrate that ciliary neurotrophic factor (CNTF) confers life-long protection against photoreceptor degeneration. Repetitive retinal imaging allowed the survival of intrinsically fluorescent cone photoreceptors to be quantified in vivo. Imaging of the visual cortex and assessment of visually-evoked behavioural responses demonstrated that surviving cones retain function and signal correctly to the brain. The mechanisms underlying CNTF-mediated neuroprotection were explored through transcriptome analysis, revealing widespread up-regulation of proteolysis inhibitors, which may prevent cellular/extracellular matrix degradation and complement activation in neurodegenerative diseases. These findings provide insights into potential novel therapeutic avenues for diseases such as retinitis pigmentosa and amyotrophic lateral sclerosis, for which CNTF has been evaluated unsuccessfully in clinical trials.Molecular Therapy (2015); doi:10.1038/mt.2015.68

    Supplementary Material for: Spectral Tuning in the Eyes of Deep-Sea Lanternfishes (Myctophidae): A Novel Sexually Dimorphic Intra-Ocular Filter

    No full text
    Deep-sea fishes possess several adaptations to facilitate vision where light detection is pushed to its limit. Lanternfishes (Myctophidae), one of the world's most abundant groups of mesopelagic fishes, possess a novel and unique visual specialisation, a sexually dimorphic photostable yellow pigmentation, constituting the first record of a visual sexual dimorphism in any non-primate vertebrate. The topographic distribution of the yellow pigmentation across the retina is species specific, varying in location, shape and size. Spectrophotometric analyses reveal that this new retinal specialisation differs between species in terms of composition and acts as a filter, absorbing maximally between 356 and 443 nm. Microspectrophotometry and molecular analyses indicate that the species containing this pigmentation also possess at least 2 spectrally distinct rod visual pigments as a result of a duplication of the <i>Rh1</i> opsin gene. After modelling the effect of the yellow pigmentation on photoreceptor spectral sensitivity, we suggest that this unique specialisation acts as a filter to enhance contrast, thereby improving the detection of bioluminescent emissions and possibly fluorescence in the extreme environment of the deep sea. The fact that this yellow pigmentation is species specific, sexually dimorphic and isolated within specific parts of the retina indicates an evolutionary pressure to visualise prey/predators/mates in a particular part of each species' visual field

    Convective and absolute instability in the incompressible boundary layer on a rotating disk in the prescence of a uniform magnetic field

    No full text
    The stability of a conducting fluid flow over a rotating disk with a uniform magnetic field applied normal to the disk, is investigated. It is assumed that the magnetic field is unaffected by the motion of the fluid. The mean flow and linear stability equations are solved for a range of magnetic field-strength parameters and the absolute/convective nature of the stability is investigated. It is found that increasing the magnetic field parameter is in general stabilizing
    corecore