526 research outputs found

    How typical is the Coma cluster?

    Get PDF
    Coma is frequently used as the archetype z~0 galaxy cluster to compare higher redshift work against. It is not clear, however, how representative the Coma cluster is for galaxy clusters of its mass or X-ray luminosity, and significantly: recent works have suggested that the galaxy population of Coma may be in some ways anomolous. In this work, we present a comparison of Coma to an X-ray selected control sample of clusters. We show that although Coma is typical against the control sample in terms of its internal kinematics (substructure and velocity dispersion profile), it has a significantly high (~3sigma) X-ray temperature set against clusters of comparable mass. By de-redshifting our control sample cluster galaxies star-formation rates using a fit to the galaxy main sequence evolution at z < 0.1, we determine that the typical star-formation rate of Coma galaxies as a function of mass is higher than for galaxies in our control sample at a confidence level of > 99 per cent. One way to alleviate this discrepency and bring Coma in-line with the control sample would be to have the distance to Coma to be slightly lower, perhaps through a non-negligible peculiar velocity with respect to the Hubble expansion, but we do not regard this as likely given precision measurements using a variety of approaches. Therefore in summary, we urge caution in using Coma as a z~0 baseline cluster in galaxy evolution studies.Comment: accepted for publication in MNRA

    Introduction

    Get PDF

    Convolution spline approximations for time domain boundary integral equations

    Get PDF
    We introduce a new "convolution spline'' temporal approximation of time domain boundary integral equations (TDBIEs). It shares some properties of convolution quadrature (CQ) but, instead of being based on an underlying ODE solver, the approximation is explicitly constructed in terms of compactly supported basis functions. This results in sparse system matrices and makes it computationally more efficient than using the linear multistep version of CQ for TDBIE time-stepping. We use a Volterra integral equation (VIE) to illustrate the derivation of this new approach: at time step t_n = n\dt the VIE solution is approximated in a backwards-in-time manner in terms of basis functions ϕj\phi_j by u(t_n-t) \approx \sum_{j=0}^n u_{n-j}\,\phi_j(t/\dt) for t∈[0,tn]t \in [0,t_n]. We show that using isogeometric B-splines of degree m≥1m\ge 1 on [0,∞)[0,\infty) in this framework gives a second order accurate scheme, but cubic splines with the parabolic runout conditions at t=0t=0 are fourth order accurate. We establish a methodology for the stability analysis of VIEs and demonstrate that the new methods are stable for non-smooth kernels which are related to convergence analysis for TDBIEs, including the case of a Bessel function kernel oscillating at frequency \oo(1/\dt). Numerical results for VIEs and for TDBIE problems on both open and closed surfaces confirm the theoretical predictions

    Implications for the origin of dwarf early-type galaxies: a detailed look at the isolated rotating dwarf early-type galaxy CG 611, with ramifications for the Fundamental Plane's (S_K)^2 kinematic scaling and the spin-ellipticity diagram

    Get PDF
    Selected from a sample of nine, isolated, dwarf early-type galaxies (ETGs) having the same range of kinematic properties as dwarf ETGs in clusters, we use CG 611 (LEDA 2108986) to address the Nature versus Nurture debate regarding the formation of dwarf ETGs. The presence of faint disk structures and rotation within some cluster dwarf ETGs has often been heralded as evidence that they were once late-type spiral or dwarf irregular galaxies prior to experiencing a cluster-induced transformation into an ETG. However, CG 611 also contains significant stellar rotation (~20 km/s) over its inner half light radius, R_(e,maj)=0.71 kpc, and its stellar structure and kinematics resemble those of cluster ETGs. In addition to hosting a faint young nuclear spiral within a possible intermediate-scale stellar disk, CG 611 has accreted an intermediate-scale, counter-rotating gas disk. It is therefore apparent that dwarf ETGs can be built by accretion events, as opposed to disk-stripping scenarios. We go on to discuss how both dwarf and ordinary ETGs with intermediate-scale disks, whether under (de)construction or not, are not fully represented by the kinematic scaling S_0.5=sqrt{ 0.5(V_rot)^2 + sigma^2 }, and we also introduce a modified spin-ellipticity diagram, lambda(R)-epsilon(R), with the potential to track galaxies with such disks.Comment: 15 pages (includes 9 figures and an extensive 2+ page reference list

    Demographic characteristics of exploited tropical lutjanids: a comparative analysis

    Get PDF
    Demographic parameters from seven exploited coral reef lutjanid species were compared as a case study of the implications of intrafamily variation in life histories for multispecies harvest management. Modal lengths varied by 4 cm among four species (Lutjanus fulviflamma, L. vitta, L. carponotatus, L. adetii), which were at least 6 cm smaller than the modal lengths of the largest species (L. gibbus, Symphorus nematophorus, Aprion virescens). Modal ages, indicating ages of full selection to fishing gear, were 10 years or less for all species, but maximum ages ranged from 12 (L. gibbus) to 36 years (S. nematophorus). Each species had a unique growth pattern, with differences in length-at-age and mean asymptotic fork length (L∞), but smaller species generally grew fast during the first 1–2 years of life and larger species grew more slowly over a longer period. Total mortality rates varied among species; L. gibbus had the highest mortality and L. fulviflamma, the lowest mortality. The variability in life history strategies of these tropical lutjanids makes generalizations about lutjanid life histories difficult, but the fact that all seven had characteristics that would make them particularly vulnerable to fishing indicates that harvest of tropical lutjanids should be managed with caution

    The MRE inverse problem for the elastic shear modulus

    Get PDF
    Magnetic resonance elastography (MRE) is a powerful technique for noninvasive determination of the biomechanical properties of tissue, with important applications in disease diagnosis. A typical experimental scenario is to induce waves in the tissue by time-harmonic external mechanical oscillation and then measure the tissue's displacement at fixed spatial positions 8 times during a complete time-period, extracting the dominant frequency signal from the discrete Fourier transform in time. Accurate reconstruction of the tissue's elastic moduli from MRE data is a challenging inverse problem, and we derive and analyze two new methods which address different aspects. The first of these concerns the time signal: using only the dominant frequency component loses information for noisy data and typically gives a complex value for the (real) shear modulus, which is then hard to interpret. Our new reconstruction method is based on the Fourier time-interpolant of the displacement: it uses all the measured information and automatically gives a real value of shear modulus up to rounding error. This derivation is for homogeneous materials, and our second new method (stacked frequency wave inversion, SFWI) concerns the inhomogeneous shear modulus in the time-harmonic case. The underlying problem is ill-conditioned because the coefficient of the shear modulus in the governing equations can be zero or small, and the SFWI approach overcomes this by combining approximations at different frequencies into a single overdetermined matrix--vector equation. Careful numerical tests confirm that both these new algorithms perform well

    The influence of cracks in rotating shafts

    Full text link
    In this paper, the influence of transverse cracks in a rotating shaft is analysed. The paper addresses the two distinct issues of the changes in modal properties and the influence of crack breathing on dynamic response during operation. Moreover, the evolution of the orbit of a cracked rotor near half of the first resonance frequency is investigated. The results provide a possible basis for an on-line monitoring system. In order to conduct this study, the dynamic response of a rotor with a breathing crack is evaluated by using the alternate frequency/time domain approach. It is shown that this method evaluates the nonlinear behaviour of the rotor system rapidly and efficiently by modelling the breathing crack with a truncated Fourier series. The dynamic response obtained by applying this method is compared with that evaluated through numerical integration. The resulting orbit during transient operation is presented and some distinguishing features of a cracked rotor are examined

    Layered Structures of Ti-6Al-4V Alloy and Metal Matrix Composites on Its Base Joint by Diffusion Bonding and Friction Welding

    Get PDF
    Metallic layered structures demonstrate an advanced set of characteristics that combine different properties not found within homogenous bulk materials. Powder metallurgy (PM) is proven to be the most efficient way of fabrication of layered structures, including highly rated structures of Ti alloys. Residual porosity, however, remains one of the biggest problems of titanium-based PM products and this can adversely affect the mechanical properties and performance of the structural parts. Post-sintering hot deformation is a common way to control the porosity of metallic materials. Traditional thermomechanical processing like hot rolling, however, could not be applied on multi-layered structures due to the disparity of the different layers’ plastic flow. Separate processing of high performance individual layers to reach their best parameters, followed by post processing bonding of the mating subcomponents is a credible pathway for fabrication of the layered materials with highly optimized properties of each individual layer. In this study we used diffusion bonding (DB) and friction welding to join the parts made of Ti-6Al-4V alloy and metal matrix composites on the base of this alloy reinforced with 10% of either TiB or TiC. Parts were fabricated using blended elemental PM. Different protocols were used to join the materials: DB welding via rotational friction (RFW) and linear friction (LFW) as well as different geometries of mating subcomponents were tested. Structure characterization of the joints using light optical microscopy, SEM, EDS, EBSD as well as mechanical tests were performed. All used protocols were generally successful in bonding the parts made of Ti-64 alloy and composites on its base. The potential of DB, RFW and LFW of Ti-6Al-4V alloy and its MMC are discussed
    • …
    corecore