68,860 research outputs found

    Resolved stellar population of distant galaxies in the ELT era

    Full text link
    The expected imaging capabilities of future Extremely Large Telescopes (ELTs) will offer the unique possibility to investigate the stellar population of distant galaxies from the photometry of the stars in very crowded fields. Using simulated images and photometric analysis we explore here two representative science cases aimed at recovering the characteristics of the stellar populations in the inner regions of distant galaxies. Specifically: case A) at the center of the disk of a giant spiral in the Centaurus Group, (mu B~21, distance of 4.6 Mpc); and, case B) at half of the effective radius of a giant elliptical in the Virgo Cluster (mu~19.5, distance of 18 Mpc). We generate synthetic frames by distributing model stellar populations and adopting a representative instrumental set up, i.e. a 42 m Telescope operating close to the diffraction limit. The effect of crowding is discussed in detail showing how stars are measured preferentially brighter than they are as the confusion limit is approached. We find that (i) accurate photometry (sigma~0.1, completeness >90%) can be obtained for case B) down to I~28.5, J~27.5 allowing us to recover the stellar metallicity distribution in the inner regions of ellipticals in Virgo to within ~0.1 dex; (ii) the same photometric accuracy holds for the science case A) down to J~28.0, K~27.0, enabling to reconstruct of the star formation history up to the Hubble time via simple star counts in diagnostic boxes. For this latter case we discuss the possibility of deriving more detailed information on the star formation history from the analysis of their Horizontal Branch stars. We show that the combined features of high sensitivity and angular resolution of ELTs may open a new era for our knowledge of the stellar content of galaxies of different morphological type up to the distance of the Virgo cluster.Comment: 21 pages, 17 figures, PASP accepted in pubblicatio

    Establishing an analogue population for the most distant galaxies

    Full text link
    Lyman break analogues (LBAs) are local galaxies selected to match a more distant (usually z~3) galaxy population in luminosity, UV-spectral slope and physical characteristics, and so provide an accessible laboratory for exploring their properties. However, as the Lyman break technique is extended to higher redshifts, it has become clear that the Lyman break galaxies (LBGs) at z~3 are more massive, luminous, redder, more extended and at higher metallicities than their z~5 counterparts. Thus extrapolations from the existing LBA samples (which match z=3 properties) have limited value for characterising z>5 galaxies, or inferring properties unobservable at high redshift. We present a new pilot sample of twenty-one compact star forming galaxies in the local (0.05<z<0.25) Universe, which are tuned to match the luminosities and star formation volume densities observed in z>~5 LBGs. Analysis of optical emission line indices suggests that these sources have typical metallicities of a few tenths Solar (again, consistent with the distant population). We also present radio continuum observations of a subset of this sample (13 sources) and determine that their radio fluxes are consistent with those inferred from the ultraviolet, precluding the presence of a heavily obscured AGN or significant dusty star formation.Comment: 13 pages, MNRAS accepte

    SINFONI's take on Star Formation, Molecular Gas, and Black Hole Masses in AGN

    Full text link
    We present some preliminary (half-way) results on our adaptive optics spectroscopic survey of AGN at spatial scales down to 0.085arcsec. Most of the data were obtained with SINFONI which provides integral field capability at a spectral resolution of R~4000. The themes on which we focus in this contribution are: star formation around the AGN, the properties of the molecular gas and its relation to the torus, and the mass of the black hole.Comment: 5 pages, 2 figures. To appear in Science Perspectives for 3D Spectroscopy. ESO Astrophysics Symposia. Ed by M. Kissler-Patig, M. Roth and J. Wals

    Highly Ionised Gas as a Diagnostic of the Inner NLR

    Full text link
    The spectra of AGN from the ultraviolet to the near infrared, exhibit emission lines covering a wide range of ionisation states, from neutral species such as [O I] 6300A, up to [Fe XIV] 5303A. Here we report on some recent studies of the properties of highly ionised lines (HILs), plus two case studies of individual objects. Future IFU observations at high spatial and good spectral resolution, will probe the excitation and kinematics of the gas in the zone between the extended NLR and unresolved BLR. Multi-component SED fitting can be used to link the source of photoionisation with the strengths and ratios of the HILs.Comment: Proceedings of the IAU Symposium: Co-evolution of Central Black Holes and Galaxie

    New Cosmological Structures on Medium Angular Scales Detected with the Tenerife Experiments

    Get PDF
    We present observations at 10 and 15 GHz taken with the Tenerife experiments in a band of the sky at Dec.=+35 degrees. These experiments are sensitive to multipoles in the range l=10-30. The sensitivity per beam is 56 and 20 microK for the 10 and the 15 GHz data, respectively. After subtraction of the prediction of known radio-sources, the analysis of the data at 15 GHz at high Galactic latitude shows the presence of a signal with amplitude Delta Trms ~ 32 microK. In the case of a Harrison-Zeldovich spectrum for the primordial fluctuations, a likelihood analysis shows that this signal corresponds to a quadrupole amplitude Q_rms-ps=20.1+7.1-5.4 microK, in agreement with our previous results at Dec.+=40 degrees and with the results of the COBE DMR. There is clear evidence for the presence of individual features in the RA range 190 degrees to 250 degrees with a peak to peak amplitude of ~110 microK. A preliminary comparison between our results and COBE DMR predictions for the Tenerife experiments clearly indicates the presence of individual features common to both. The constancy in amplitude over such a large range in frequency (10-90 GHz) is strongly indicative of an intrinsic cosmological origin for these structures.Comment: ApJ Letters accepted, 13 pages Latex (uses AASTEX) and 4 encapsulated postscript figures

    The existence and detection of optically dark galaxies by 21cm surveys

    Get PDF
    One explanation for the disparity between Cold Dark Matter (CDM) predictions of galaxy numbers and observations could be that there are numerous dark galaxies in the Universe. These galaxies may still contain baryons, but no stars, and may be detectable in the 21cm line of atomic hydrogen. The results of surveys for such objects, and simulations that do/do not predict their existence, are controversial. In this paper we use an analytical model of galaxy formation, consistent with CDM, to firstly show that dark galaxies are certainly a prediction of the model. Secondly, we show that objects like VIRGOHI21, a dark galaxy candidate recently discovered by us, while rare are predicted by the model. Thirdly, we show that previous 'blind' HI surveys have placed few constraints on the existence of dark galaxies. This is because they have either lacked the sensitivity and/or velocity resolution or have not had the required detailed optical follow up. We look forward to new 21cm blind surveys (ALFALFA and AGES) using the Arecibo multi-beam instrument which should find large numbers of dark galaxies if they exist

    The detection of FIR emission from high redshift star-forming galaxies in the ECDF-S

    Full text link
    ABRIDGED: We have used the LABOCA Survey of the ECDF-S (LESS) to investigate rest-frame FIR emission from typical SF systems (LBGs) at redshift 3, 4, and 5. We initially concentrate on LBGs at z~3 and select three subsamples on stellar mass, extinction corrected SF and rest-frame UV-magnitude. We produce composite 870micron images of the typical source in our subsamples, obtaining ~4sigma detections and suggesting a correlation between FIR luminosity and stellar mass. We apply a similar procedure to our full samples at z~3, 4, 4.5 and 5 and do not obtain detections - consistent with a simple scaling between FIR luminosity and stellar mass. In order to constrain the FIR SED of these systems we explore their emission at multiple wavelengths spanning the peak of dust emission at z~3 using the Herschel SPIRE observations of the field. We obtain detections at multiple wavelengths for both our stellar mass and UV-magnitude selected samples, and find a best-fit SED with T_dust in the ~33-41K range. We calculate L_FIR, obscured SFRs and M_dust, and find that a significant fraction of SF in these systems is obscured. Interestingly, our extinction corrected SFR sample does not display the large FIR fluxes predicted from its red UV-spectral slope. This suggests that the method of assuming an intrinsic UV-slope and correcting for dust attenuation may be invalid for this sample - and that these are not in fact the most actively SF systems. All of our z~3 samples fall on the `main sequence' of SF galaxies at z~3 and our detected subsamples are likely to represent the high obscuration end of LBGs at their epoch. We compare the FIR properties of our subsamples with various other populations, finding that our stellar mass selected sample shows similar FIR characteristics to SMGs at the same epoch and therefore potentially represents the low L_FIR end of the high redshift FIR luminosity function.Comment: 18 pages, 10 figure, MNRAS accepted, corrected typos, acknowledgements adde

    The Tenerife Cosmic Microwave Background Maps: Observations and First Analysis

    Full text link
    The results of the Tenerife Cosmic Microwave Background (CMB) experiments are presented. These observations cover 5000 and 6500 square degrees on the sky at 10 and 15 GHz respectively centred around Dec.~ +35 degrees. The experiments are sensitive to multipoles l=10-30 which corresponds to the Sachs-Wolfe plateau of the CMB power spectra. The sensitivity of the results are ~31 and \~12 microK at 10 and 15 GHz respectively in a beam-size region (5 degrees FWHM). The data at 15 GHz show clear detection of structure at high Galactic latitude; the results at 10 GHz are compatible with these, but at lower significance. A likelihood analysis of the 10 and 15 GHz data at high Galactic latitude, assuming a flat CMB band power spectra gives a signal Delta T_l=30+10-8 microK (68 % C.L.). Including the possible contaminating effect due to the diffuse Galactic component, the CMB signal is Delta T_l=30+15-11 microK. These values are highly stable against the Galactic cut chosen. Assuming a Harrison-Zeldovich spectrum for the primordial fluctuations, the above values imply an expected quadrupole Q_RMS-PS=20+10-7 microK which confirms previous results from these experiments, and which are compatible with the COBE DMR.Comment: 17 pages, 7 figures. Submitted to Ap
    • …
    corecore