20,750 research outputs found
An analysis of interplanetary solar radio emissions associated with a coronal mass ejection
Coronal mass ejections (CMEs) are large-scale eruptions of magnetized plasma
that may cause severe geomagnetic storms if Earth-directed. Here we report a
rare instance with comprehensive in situ and remote sensing observa- tions of a
CME combining white-light, radio, and plasma measurements from four different
vantage points. For the first time, we have successfully applied a radio
direction-finding technique to an interplanetary type II burst detected by two
identical widely separated radio receivers. The derived locations of the type
II and type III bursts are in general agreement with the white light CME recon-
struction. We find that the radio emission arises from the flanks of the CME,
and are most likely associated with the CME-driven shock. Our work demon-
strates the complementarity between radio triangulation and 3D reconstruction
techniques for space weather applications
Automatic Quantum Error Correction
Criteria are given by which dissipative evolution can transfer populations
and coherences between quantum subspaces, without a loss of coherence. This
results in a form of quantum error correction that is implemented by the joint
evolution of a system and a cold bath. It requires no external intervention
and, in principal, no ancilla. An example of a system that protects a qubit
against spin-flip errors is proposed. It consists of three spin 1/2 magnetic
particles and three modes of a resonator. The qubit is the triple quantum
coherence of the spins, and the photons act as ancilla.Comment: 16 pages 12 fig LaTex uses multicol, graphicx expanded version of
letter submitted to Phys Rev Let
Managing weight and glycaemic targets in people with type 2 diabetes—How far have we come?
Introduction: As the vast majority of people with type 2 diabetes (T2D) are also overweight or obese, healthcare professionals (HCP) are faced with the task of addressing both weight management and glucose control. In this narrative review, we aim to identify the challenges of reaching and maintaining body weight targets in people with T2D and highlight current and future treatment interventions. Methods: A search of the PubMed database was conducted using the search terms “diabetes” and “weight loss.”. Results: According to emerging evidence, treating obesity may be antecedent to the development and progression of T2D. While clinical benefits typically set in upon achieving a weight loss of 3–5%, these benefits are progressive leading to further health improvements, and weight loss of >15% can have a disease-modifying effect in people with T2D, an outcome that up to recently could not be achieved with any blood glucose-lowering pharmacotherapy. However, advanced treatment options with weight-loss effects currently in development including the dual GIP/GLP-1 receptor agonists may enable simultaneous achievement of individual glycemic and weight goals. Conclusion: Despite considerable therapeutic progress, there is still a large unmet medical need in patients with T2D who miss their individualized glycemic and weight-loss targets. Nonetheless, it is to be expected that development of future therapies and their use will favourably change the scenario of weight and glucose control in T2D
Fusion of the -Vertex Operators and its Application to Solvable Vertex Models
We diagonalize the transfer matrix of the inhomogeneous vertex models of the
6-vertex type in the anti-ferroelectric regime intoducing new types of q-vertex
operators. The special cases of those models were used to diagonalize the s-d
exchange model\cite{W,A,FW1}. New vertex operators are constructed from the
level one vertex operators by the fusion procedure and have the description by
bosons. In order to clarify the particle structure we estabish new isomorphisms
of crystals. The results are very simple and figure out representation
theoretically the ground state degenerations.Comment: 35 page
QKZ equation with |q|=1 and correlation functions of the XXZ model in the gapless regime
An integral solution to the quantum Knizhnik-Zamolodchikov (KZ) equation
with is presented. Upon specialization, it leads to a conjectural
formula for correlation functions of the XXZ model in the gapless regime. The
validity of this conjecture is verified in special cases, including the nearest
neighbor correlator with an arbitrary coupling constant, and general
correlators in the XXX and XY limits
Ground-plane screening of Coulomb interactions in two-dimensional systems: How effectively can one two-dimensional system screen interactions in another?
The use of a nearby metallic ground-plane to limit the range of the Coulomb
interactions between carriers is a useful approach in studying the physics of
two-dimensional (2D) systems. This approach has been used to study Wigner
crystallization of electrons on the surface of liquid helium, and most
recently, the insulating and metallic states of semiconductor-based
two-dimensional systems. In this paper, we perform calculations of the
screening effect of one 2D system on another and show that a 2D system is at
least as effective as a metal in screening Coulomb interactions. We also show
that the recent observation of the reduced effect of the ground-plane when the
2D system is in the metallic regime is due to intralayer screening.Comment: 14 pages, 7 figures Accepted in PR
Hysteresis loops of Co-Pt perpendicular magnetic multilayers
We develop a phenomenological model to study magnetic hysteresis in two
samples designed as possible perpendicular recording media. A stochastic
cellular automata model captures cooperative behavior in the nucleation of
magnetic domains. We show how this simple model turns broad hysteresis loops
into loops with sharp drops like those observed in these samples, and explains
their unusual features. We also present, and experimentally verify, predictions
of this model, and suggest how insights from this model may apply more
generally.Comment: 4.5 pages, 5 figure
On Tackling the Limits of Resolution in SAT Solving
The practical success of Boolean Satisfiability (SAT) solvers stems from the
CDCL (Conflict-Driven Clause Learning) approach to SAT solving. However, from a
propositional proof complexity perspective, CDCL is no more powerful than the
resolution proof system, for which many hard examples exist. This paper
proposes a new problem transformation, which enables reducing the decision
problem for formulas in conjunctive normal form (CNF) to the problem of solving
maximum satisfiability over Horn formulas. Given the new transformation, the
paper proves a polynomial bound on the number of MaxSAT resolution steps for
pigeonhole formulas. This result is in clear contrast with earlier results on
the length of proofs of MaxSAT resolution for pigeonhole formulas. The paper
also establishes the same polynomial bound in the case of modern core-guided
MaxSAT solvers. Experimental results, obtained on CNF formulas known to be hard
for CDCL SAT solvers, show that these can be efficiently solved with modern
MaxSAT solvers
Precision determination of band offsets in strained InGaAs/GaAs quantum wells by C-V-profiling and Schroedinger-Poisson self-consistent simulation
The results of measurements and numerical simulation of charge carrier
distribution and energy states in strained quantum wells In_xGa_{1-x}As/GaAs
(0.06 < x < 0.29) by C-V-profiling are presented. Precise values of conduction
band offsets for these pseudomorphic QWs have been obtained by means of
self-consistent solution of Schroedinger and Poisson equations and following
fitting to experimental data. For the conduction band offsets in strained
In_xGa_{1-x}As/GaAs - QWs the expression DE_C(x) = 0.814x - 0.21x^2 has been
obtained.Comment: 9 pages, 12 figures, RevTeX
- …