4,468 research outputs found

    Optimal distinction between non-orthogonal quantum states

    Get PDF
    Given a finite set of linearly independent quantum states, an observer who examines a single quantum system may sometimes identify its state with certainty. However, unless these quantum states are orthogonal, there is a finite probability of failure. A complete solution is given to the problem of optimal distinction of three states, having arbitrary prior probabilities and arbitrary detection values. A generalization to more than three states is outlined.Comment: 9 pages LaTeX, one PostScript figure on separate pag

    Convex probability domain of generalized quantum measurements

    Full text link
    Generalized quantum measurements with N distinct outcomes are used for determining the density matrix, of order d, of an ensemble of quantum systems. The resulting probabilities are represented by a point in an N-dimensional space. It is shown that this point lies in a convex domain having at most d^2-1 dimensions.Comment: 7 pages LaTeX, one PostScript figure on separate pag

    Effective mass theory of monolayer \delta-doping in the high-density limit

    Full text link
    Monolayer \delta-doped structures in silicon have attracted renewed interest with their recent incorporation into atomic-scale device fabrication strategies as source and drain electrodes and in-plane gates. Modeling the physics of \delta-doping at this scale proves challenging, however, due to the large computational overhead associated with ab initio and atomistic methods. Here, we develop an analytical theory based on an effective mass approximation. We specifically consider the Si:P materials system, and the limit of high donor density, which has been the subject of recent experiments. In this case, metallic behavior including screening tends to smooth out the local disorder potential associated with random dopant placement. While smooth potentials may be difficult to incorporate into microscopic, single-electron analyses, the problem is easily treated in the effective mass theory by means of a jellium approximation for the ionic charge. We then go beyond the analytic model, incorporating exchange and correlation effects within a simple numerical model. We argue that such an approach is appropriate for describing realistic, high-density, highly disordered devices, providing results comparable to density functional theory, but with greater intuitive appeal, and lower computational effort. We investigate valley coupling in these structures, finding that valley splitting in the low-lying \Gamma band grows much more quickly than the \Gamma-\Delta band splitting at high densities. We also find that many-body exchange and correlation corrections affect the valley splitting more strongly than they affect the band splitting

    The Fulling-Davies-Unruh Effect is Mandatory: The Proton's Testimony

    Full text link
    We discuss the decay of accelerated protons and illustrate how the Fulling-Davies-Unruh effect is indeed mandatory to maintain the consistency of standard Quantum Field Theory. The confidence level of the Fulling-Davies-Unruh effect must be the same as that of Quantum Field Theory itself.Comment: Awarded "honorable mention" by Gravity Research Foundation in the 2002 Essay competitio

    Diversity and environmental adaptation of phagocytic cell metabolism

    Get PDF
    Phagocytes are cells of the immune system that play important roles in phagocytosis, respiratory burst and degranulation-key components of innate immunity and response to infection. This diverse group of cells includes monocytes, macrophages, dendritic cells, neutrophils, eosinophils, and basophils-heterogeneous cell populations possessing cell and tissue-specific functions of which cellular metabolism comprises a critical underpinning. Core functions of phagocytic cells are diverse and sensitive to alterations in environmental- and tissue-specific nutrients and growth factors. As phagocytic cells adapt to these extracellular cues, cellular processes are altered and may contribute to pathogenesis. The considerable degree of functional heterogeneity among monocyte, neutrophil, and other phagocytic cell populations necessitates diverse metabolism. As we review our current understanding of metabolism in phagocytic cells, gaps are focused on to highlight the need for additional studies that hopefully enable improved cell-based strategies for counteracting cancer and other diseases

    Accessible chemical space for metal nitride perovskites

    Get PDF
    Building on the extensive exploration of metal oxide and metal halide perovskites, metal nitride perovskites represent a largely unexplored class of materials. We report a multi-tier computational screening of this chemical space. From a pool of 3660 ABN3 compositions covering I–VIII, II–VII, III–VI and IV–V oxidation state combinations, 279 are predicted to be chemically feasible. The ground-state structures of the 25 most promising candidate compositions were explored through enumeration over octahedral tilt systems and global optimisation. We predict 12 dynamically and thermodynamically stable nitride perovskite materials, including YMoN3, YWN3, ZrTaN3, and LaMoN3. These feature significant electric polarisation and low predicted switching electric field, showing similarities with metal oxide perovskites and making them attractive for ferroelectric memory devices

    Accessible Chemical Space for Metal Nitride Perovskites

    Get PDF
    Building on the extensive exploration of metal oxide and metal halide perovskites, metal nitride perovskites represent a largely unexplored class of materials. We report a multi-tier computational screening of this chemical space. From a pool of 3660 ABN3_3 compositions covering I-VIII, II-VII, III-VI and IV-V oxidation state combinations, 279 are predicted to be chemically feasible. The ground-state structures of the 25 most promising candidate compositions were explored through enumeration over octahedral tilt systems and global optimisation. We predict 12 dynamically and thermodynamically stable nitride perovskite materials, including YMoN3_3, YWN3_3, ZrTaN3_3, and LaMoN3_3. These feature significant electric polarisation and low predicted switching electric field, showing similarities with metal oxide perovskites and making them attractive for ferroelectric memory device

    Approximating incompatible von Neumann measurements simultaneously

    Get PDF
    We study the problem of performing orthogonal qubit measurements simultaneously. Since these measurements are incompatible, one has to accept additional imprecision. An optimal joint measurement is the one with the least possible imprecision. All earlier considerations of this problem have concerned only joint measurability of observables, while in this work we also take into account conditional state transformations (i.e., instruments). We characterize the optimal joint instrument for two orthogonal von Neumann instruments as being the Luders instrument of the optimal joint observable.Comment: 9 pages, 4 figures; v2 has a more extensive introduction + other minor correction

    Peritoneal tissue-resident macrophages are metabolically poised to engage microbes using tissue-niche fuels

    Get PDF
    The importance of metabolism in macrophage function has been reported, but the in vivo relevance of the in vitro observations is still unclear. Here we show that macrophage metabolites are defined in a specific tissue context, and these metabolites are crucially linked to tissue-resident macrophage functions. We find the peritoneum to be rich in glutamate, a glutaminolysis-fuel that is exploited by peritoneal-resident macrophages to maintain respiratory burst during phagocytosis via enhancing mitochondrial complex-II metabolism. This niche-supported, inducible mitochondrial function is dependent on protein kinase C activity, and is required to fine-tune the cytokine responses that control inflammation. In addition, we find that peritoneal-resident macrophage mitochondria are recruited to phagosomes and produce mitochondrially derived reactive oxygen species, which are necessary for microbial killing. We propose that tissue-resident macrophages are metabolically poised in situ to protect and exploit their tissue-niche by utilising locally available fuels to implement specific metabolic programmes upon microbial sensing
    • …
    corecore