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Abstract

Continuous glucose monitors (CGM) record interstitial glucose levels ‘continuously’, pro-

ducing a sequence of measurements for each participant (e.g. the average glucose level

every 5 min over several days, both day and night). To analyse these data, researchers

tend to derive summary variables such as the area under the curve (AUC), to then use in

subsequent analyses. To date, a lack of consistency and transparency of precise defini-

tions used for these summary variables has hindered interpretation, replication and com-

parison of results across studies. We present GLU, an open-source software package for

deriving a consistent set of summary variables from CGM data. GLU performs quality

control of each CGM sample (e.g. addressing missing data), derives a diverse set of

summary variables (e.g. AUC and proportion of time spent in hypo-, normo- and hyper-

glycaemic levels) covering six broad domains, and outputs these (with quality control in-

formation) to the user. GLU is implemented in R and is available on GitHub at https://

github.com/MRCIEU/GLU. Git tag v0.2 corresponds to the version presented here.

Key words: Glucose, continuous glucose monitoring, CGM, BMI, pregnancy

Introduction

Epidemiological and clinical studies interested in circulat-

ing glucose as a risk factor or outcome typically measure

levels in the blood (fasting, non-fasting and/or post-oral

glucose) at a single or widely spaced time-points (e.g. every

few years).1–4 Although these are important health

indicators, there has been an increasing appreciation that

glucose levels and variability in free-living conditions dur-

ing both the day and night, may also provide important

health measures in clinical (e.g. diabetic or obese) and

‘healthy’ populations.5–11 Continuous glucose monitoring

(CGM) systems measure interstitial glucose levels by
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implanting a sensor subcutaneously.12 Typically, finger

prick blood glucose measurements are needed to calibrate

the interstitial glucose levels to capillary blood glucose lev-

els, although devices that do not need this calibration step

are now becoming increasingly available.12,13 Throughout

this paper we refer to the sensor predicted capillary glucose

levels as ‘sensor glucose’.

CGM systems were initially used in research evaluating

their potential value in patients with diabetes.8,9,11–19 For

instance, some studies have assessed the accuracy of CGM

as a proxy measure of blood glucose,13,14,18 whereas others

have assessed the effectiveness of CGM in the management

of type I or type II diabetes.11,15,16,19 As a result CGM is

now increasingly used in the management of type I and

type II diabetes.20,21 More recently, CGM has been used in

a wider range of epidemiological studies, where the aim is

to understand the relationship of characteristics in these

CGM data with other health traits and disease. For in-

stance, CGM has been used to measure glucose levels

‘continuously’ over a number of days to identify hypo-

glycaemia in those receiving intensive care, and in ‘healthy’

populations to explore whether it can be used to identify

groups at increased risk of diabetes, including gestational

diabetes.22–26 Unlike the glucose level at a single time-point

providing only a ‘snap-shot’ of glycaemic control, or gly-

cated haemoglobin that gives a single measure indicating

mean glucose levels over a period of weeks, researchers can

use these CGM data to assess how interstitial glucose levels

vary across the day and night for several days or weeks and

identify determinants of this variation and its health im-

pact.22–26

Researchers using CGM data tend to first derive sum-

mary variables that are then used in their subsequent anal-

yses (e.g. exploring the association of these summary

variables with later health outcomes). Summary variables

might include area under the curve (AUC) (i.e. the average

glucose level over time) or time spent in low, medium or

high levels. Although there are a set of variables that may

be commonly derived in CGM studies there are increasing

examples of studies addressing broadly similar research

questions but deriving different summary variables. For

example, we found two papers assessing glycaemic vari-

ability in non-diabetic people, one that included morbidly

obese participants22 and the other that included healthy

people.27 Whilst both of these studies used standard devia-

tion (SD), coefficient of variation (CV) and mean ampli-

tude of glycaemic excursions (MAGE) as measures of

variability, the one in morbidly obese people also used

mean of daily differences (MODD)22 and the other used

mean absolute rate of change (MARC).27 These two stud-

ies illustrate that (i) several measures of variability can be

derived from CGM data and it is important to justify

which are used and differences between them, which nei-

ther of these papers did, and (ii) we would want consistent

measures to be used across studies. Even when different

studies derive a variable representing the same fundamen-

tal property it may be defined differently, e.g. using

different thresholds to define hypo-, normo- and hyper-

glycaemia.5,22 This lack of consistency across studies, to-

gether with insufficient reporting of study methods, means

that it is difficult to interpret results. It is also difficult to

seek replication or pool study results in meta-analyses

when varied measures are derived.5–8,11,28–30 For example,

a recent review that compared studies according to the

proportion of time in hypo- normo- and hyper-glycaemia

was limited because researchers used different thresholds

or did not include these measures at all.22 It is also unclear

whether researchers derive many summary variables but

only present those for which analysis supports their hy-

pothesis, such that the evidence published in the literature

and on which clinical decisions are based may be biased.31

The American Diabetes Association recently suggested

some summary statistics [such as the CV to assess variabil-

ity and proportion of time in ranges (hypo-, normo- and

hyper- glycaemia)] to assess glucose control in patients

with diabetes, but acknowledged further research was

needed to establish which summary measures are most

useful even in diabetes patients.8 Outside this guidance we

are unaware of any that has been suggested for the

broader use of CGM in epidemiology; nor are we aware of

any general epidemiology research tools to systematize

analyses of CGM data.

In this paper, we present GLU, a general open-

source software package for processing CGM data, for use

by researchers wishing to assess the relationship of charac-

teristics in CGM data with other traits and disease, using

data from any study design, including prospective cohort

studies or randomized trials, of general or clinical popula-

tions. The widespread use of this software across different

research studies will help to identify the key measurements

from CGM that have most clinical relevance in different

contexts and groups of patients, and in time potentially re-

sult in the most efficient and effective use of CGM in clini-

cal practice. GLU performs quality control and derives a

set of glucose characteristics (illustrated in Figure 1), that

can be used in subsequent analyses. Use of a common tool

will help to standardize methods across research studies.

Hence, in the future it will be easier to compare and meta-

analyse results across studies, and perform replication

analyses. An open source tool also improves transparency

of methods as all code is freely available, aiding interpreta-

tion of results. Furthermore, we intend to update GLU as

methods advance. The presentation of this tool is timely as

CGM is beginning to be widely adopted in epidemiological
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research, including both observational studies and ran-

domized controlled trials.22–26

Implementation

GLU is implemented in R and requires the following R pack-

ages: optparse, ggplot2, stringr [see GitHub repository

(https://github.com/MRCIEU/GLU) for package versions].

GLU supports CGM data from the Medtronic iPro2,32

Abbott Freestyle Libre33 and Dexcom G634 CGM devices,

specified using the ‘device’ argument. GLU can be used with

CGM data from other devices by converting to a general for-

mat and specifying the device as ‘other’. GLU is run by speci-

fying two directories; the location of the CGM data files and

the location where derived data (e.g. summary variables and

plots) should be stored. The CGM data is processed in two

main stages: (ii) quality control, and (ii) deriving summary

variables (illustrated in Figure 1). GLU allows the user to

specify optional arguments, and these include:

• nightstart and daystart: specifies the start time of the

day-time and night-time periods within each day period

to accommodate different populations (e.g. an early bed-

time may be more appropriate for studies of children).

By default, night-time is between 11.00 pm and 6.30 am.

If other times are used then this should be reported.

• firstvalid and dayPeriodStartTime: specifies the start time

of each day period, either the time corresponding to a

participants first sensor glucose value (hence specific to each

participant), or the time specified in the dayPeriodStartTime

argument (hence the same across participants). By default

this is set to the night-time period start time.

• pregnancy and diabetes: indicates that the data pertains

to pregnant women or diabetic patients, respectively,

such that summary variables specific to these populations

are derived (i.e. the thresholds used to determine the

time spent in hypo-, normo- and hyper-glycaemia levels,

described in the ‘Deriving glucose summary variables’

section below). If neither of these options is selected sum-

mary variables are produced that assume participants are

from a ‘general population’ without selection for preg-

nancy or diabetes.

• impute: specifies that GLU should perform ‘approximal’

or ‘other day’ imputation, rather than restricting to

‘complete days’, as described in the ‘CGM data quality

control’ section below.

GLU generates a comma-separated value (CSV) file of

derived summary variables, which can be imported into

statistical software for analysis.

CGM data quality control

GLU performs quality control to help researchers ensure

the integrity of the data, consisting of three automated

steps: resampling, outlier identification and dealing with

Figure 1. Illustration of summary variables derived by GLU. Summary variables are generated for each night-time period, each day-time period and

each full day, as appropriate (see Supplementary Table 2). Our approximation of fasting glucose level is calculated using night-time sensor glucose

data only. sGVP is a measure of variability from one moment to the next, whereas MAD denotes overall variability of glucose values while treating

time-points as a set of unordered values. The 11 GLU summary variables cover six broad domains. Domain 1, overall glucose levels: AUC (average

per minute) (mmol/L). Domain 2, glycaemic excursions: proportion of time in hypo-glycaemia, proportion of time in normo-glycaemia, proportion of

time in hyper-glycaemia. Domain 3, overall variability (dispersion): MAD (mmol/L). Domain 4, variability from one moment to the next: sGVP (%).

Domain 5, fasting glucose: fasting glucose proxy measure (mmol/L). Domain 6, post-event levels: post-prandial time to peak, post-prandial 1-h AUC,

post-prandial 2-h AUC, post-exercise 1-h AUC, post-exercise 2-h AUC, post-medication 1-h AUC, post-medication 2-h AUC.
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missing data (illustrated in Supplementary Figure 1, avail-

able as Supplementary data at IJE online). GLU also pro-

vides plots for manual review of the CGM data after these

automated steps.

Resampling

We resample the sensor glucose values across each partici-

pant’s CGM sequence to 1-min intervals using linear inter-

polation (i.e. assuming a straight line between values at

adjacent time-points), to facilitate computation of sum-

mary variables. Given two adjacent time-points t1 and t2,

with sensor glucose values SG1 and SG2, respectively, lin-

ear interpolation estimates the glucose value of time-point

t
0
where t1 � t

0 � t2 as:

SG
0 ¼ ð1�wÞ � SG1 þw� SG2

where w ¼ t
0 � t1

t2� t1
.

Outlier detection

Previous work has suggested that outliers can be detected

by identifying time-points that are more than two standard

deviations (SD) from the sensor glucose values at both the

previous and subsequent time-points.5 However, as noted

previously,6,24,35 glucose levels may not be normally dis-

tributed, so SD may not be an appropriate measure of vari-

ability. Furthermore, this approach is sensitive to the

resolution of the glucose trace such that changes in resolu-

tion would affect which regions of a glucose trace are

marked as outliers. This is because SD is invariant to

changes in sampling frequency of a glucose trace, whereas

the difference in glucose levels between adjacent time-

points is not. For example, if sensor glucose is recorded ev-

ery 1 min rather than every 5 min then the difference in

glucose levels between adjacent time-points will be smaller

but the overall distribution of sensor glucose values, and

hence the outlier detection threshold (based on the SD of

this distribution), will not change.

Using data described in our usage example (see Usage

section below), we visually assessed the distribution of sen-

sor glucose values for each participant and found these dis-

tributions to be very variable—some were normally

distributed whereas others were skewed. We therefore base

our outlier detection on the distribution of the differences

of adjacent sensor glucose values rather than the distribu-

tion of sensor glucose values. We found that the distribu-

tions of the difference of adjacent sensor glucose values

were more consistently normally distributed compared

with the distributions of sensor glucose values. Also, using

the differences of adjacent values means that this approach

is invariant to changes in the resolution of a glucose trace.

We use a threshold d, of k�SD of a participant’s distribu-

tion of differences between adjacent values.36 Time-points

with a glucose value that deviate more than d from the

value at both the previous and subsequent time-points, are

marked as outliers for further consideration by the re-

searcher. We chose a threshold of 5�SD based on experi-

mentation with our example data (see Supplementary

Section S1, available as Supplementary data at IJE online

for further details). Users can also change the value of k us-

ing GLU’s outlierthreshold argument (see GLU GitHub re-

pository for details), to make the outlier detection more

conservative or lenient. Should outliers be detected and

confirmed by visual inspection of the glucose trace then

researchers may wish to: (i) use other data such as diet dia-

ries to determine whether detected outliers may be due to

some underlying cause such as food intake (rather than er-

roneous), and (ii) perform sensitivity analyses to see the ef-

fect that removing identified outliers has on their results.

Our outlier detection method uses a threshold determined

using artificial outliers because we have no CGM data con-

taining clear (erroneous) outliers on which to base our ap-

proach (Supplementary Section S1, available as

Supplementary data at IJE online). As CGM becomes

more widely used, it will be possible to improve detection

of outliers using outlier examples, and we plan to update

GLU outlier detection as the field matures.

Assessing the impact of missing data

assumptions

CGM data may have missing time periods when the de-

vice is unable to record an interstitial glucose value, for

example, if the device becomes displaced. When missing

periods do exist, there may be systematic differences be-

tween the missing and observed values in the CGM data,

such that the derived GLU summary variables may be bi-

ased. For instance, if sensor displacement (or removal)

occurs during swimming and swimming is associated with

low glucose values, then a swimmer’s average glucose lev-

els estimated using the observed data may be higher com-

pared with the true underlying value. Under those

circumstances associations of the GLU summary variables

with a potential outcome or a risk factor may be biased.

Alternatively, the CGM missing time periods may be

missing completely at random—for instance, some tech-

nological failures of CGM devices may be due to chance.

We note that there are two related but distinct biases

when using GLU-derived summary variables: (i) bias of

the derived values of participants GLU summary varia-

bles, and (ii) bias in subsequent analyses using these sum-

mary variables. Bias from the former does not necessarily
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cause bias for the latter as this depends on the specific

analyses performed.

GLU provides three approaches to help address missing

data called ‘complete days’, ‘approximal imputed’ and

‘other day imputed’, that make different missingness

assumptions. GLU’s complete days approach uses only

days with complete sensor glucose values to derive glucose

characteristics [e.g. 24 (h) x 60/5¼ 288 values when using

CGM data with 5 min intervals]. If the days of CGM data

are missing completely at random (MCARdays) such that

there are no systematic differences between the days with

and without missing CGM data, then the derived CGM

statistics will be unbiased, hence this missingness will not

bias results of subsequent analyses.37 The MCARdays as-

sumption of the ‘complete days’ approach may be violated.

For example, characteristics of the participants such as

their age or employment status may influence whether or

not they complete the required number of capillary blood

tests or the likelihood of the CGM device being displaced.

However, even when MCARdays does not hold, analyses

using GLU’s complete days statistics may still be unbiased

depending on the specific further analysis in which they are

used.37

In general, imputation may help to reduce the amount

of excluded data and relax the missing data assumptions,

such that missing at random (MAR) [or sometimes missing

not at random (MNAR)] may be assumed rather than

MCAR.37 However, glycaemic control is influenced by

several characteristics such that imputing portions of a glu-

cose trace is non-trivial.

GLU includes two simple imputation approaches that

fill in the missing periods using non-missing regions of a

participant’s data. We refer to these approaches as

‘approximal imputation’ and ‘other day imputation’, and

both require that a day has at most 6 h missing data to be

considered for imputation. The approximal imputation ap-

proach fills in the missing periods using non-missing

regions near to the missing region, within the same day.

This approach splits the missing period in half, and uses

the sensor glucose data on the left to fill in the left half,

and the sensor glucose data on the right to fill in the right

half, as illustrated in Supplementary Figure 2, available as

Supplementary data at IJE online. Formally, given a miss-

ing period of sensor glucose values fSGi, SGiþ1 . . . SGj�1,

SGjg, fSGi . . . SGkg is replaced with fSG2i�k�1 . . . SGi�1g
and fSGk’ . . . SGjg is replaced with fSGjþ1 . . . SG2jþ1�k0g,
where k¼iþfloor((j�iþ1)/2)-1 and k0¼kþ 1 are the end

start indexes of the first and second halves of this missing

period, respectively. Each missing sequence must be less

than 2 h long to be considered for imputation.

The ‘other day imputation’ approach fills in the missing

periods using data from the same time period on a different

day of the same participant’s data. For each missing pe-

riod, this approach first identifies all days for this partici-

pant where the same time period has complete data. GLU

then randomly selects one of these days and then replaces

the missing period with this day’s time-matched data. For

both the approximal and other day imputation approaches

the imputed data is labelled such that the transitions be-

tween non-imputed and imputed sections (and transitions

between the left and right halves of imputed sections for

the approximal imputation approach), are not incorpo-

rated into summary variables—i.e. only transitions within

sections are incorporated (see Supplementary Figure 2).

Approximal and other day imputation may help to re-

duce bias in the derived CGM statistics and hence bias in

subsequent analyses that use these statistics. Under the as-

sumption that the region used to impute each missing pe-

riod is representative of that particular missing period,

then CGM statistics derived from imputed data may be

less biased. In particular, the approximal approach

assumes nearby time periods on the same day are represen-

tative of the missing period, whereas the other day ap-

proach assumes that glucose patterns over a 24 h period

are broadly similar such that regions at the same time on

alternate days are representative of the missing period. It

may however be more likely that missing regions are sys-

tematically different to the non-missing regions used for

the imputation. For example, if a device is unable to record

very high glucose values then the non-missing glucose val-

ues used to impute the missing region will be systematically

lower. In this case approximal or other day imputation

may still help to reduce bias in the derived CGM statistics.

This is because, if days with missing data are systematically

different to days without missing data then approximal im-

putation will enable information from (the non-missing

time periods on) these systematically different days to be

incorporated into the derived summary variables.

Similarly, if the CGM data are MCARday (i.e. the days of

CGM data are MCAR as described above) then the sum-

mary variables derived using approximal or other day im-

puted data will be unbiased and more precise than the

complete days version.

By default, GLU uses the complete days approach.

Users can use the approximal or other day imputation

approaches by running GLU with the imputeApproximal

or imputeOtherDay arguments, respectively. A researcher

wishing to apply another imputation approach to their

data (e.g. mean imputation, if appropriate) can do this

prior to running GLU. In the rest of this paper we refer to

days with complete CGM sequences (after imputation if

this option is used) as the set of included days. We would

suggest that researchers run their analyses using both com-

plete days and imputed data (both approximal and other

748 International Journal of Epidemiology, 2020, Vol. 49, No. 3

D
ow

nloaded from
 https://academ

ic.oup.com
/ije/article-abstract/49/3/744/5735553 by U

niversity Library user on 03 August 2020

https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa004#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa004#supplementary-data
https://academic.oup.com/ije/article-lookup/doi/10.1093/ije/dyaa004#supplementary-data


day versions) and present all results from further analyses

so that over time we can learn more about the nature of

CGM missing data and its impact on different research

questions. It is important to note that these are ‘simple’ im-

putation approaches that fill in missing data prior to any

analyses, such that standard errors in subsequent analyses

using these imputed data may be underestimated.

Manual review

In the Data visualization section we describe two plots gen-

erated by GLU; these can be used to further check data va-

lidity (see Usage section for a description of how we do

this in our example).

Deriving glucose summary variables

After quality control, GLU derives a set of summary varia-

bles illustrated in Figure 1. A full list of summary variables

computed by GLU is given in Supplementary Table 2,

available as Supplementary data at IJE online. Each char-

acteristic is calculated for each day in a participant’s CGM

data and, where appropriate, the day-time and night-time

separately (see Supplementary Table 2).8 GLU also pro-

vides the average of each summary variable across all days

for each participant to give a single overall value for each

summary variable (for each participant). For example,

GLU returns the following AUC statistics: (i) AUC for each

included day (24 h), (ii) AUC for each included day for the

night-time period, (iii) AUC for each included day for the

day-time period, (iv) mean AUC over all included days

(based on a 24-h day), (v) mean AUC of night-time periods

over all included days, and (vi) mean AUC of day-time

periods over all included days. The daily statistics provided

by GLU allow variability both between and within days to

be assessed.

Glucose summary variables output by GLU were chosen

to represent broad categories of glucose characteristics that

reflect a set of six broad domains that might, indepen-

dently of each other, relate to outcomes or be influenced

by exposures (including interventions in randomized con-

trolled trials). Supplementary Table 1, available as

Supplementary data at IJE online, lists these variables, to-

gether with other variables that have been included in

some publications but are not included here (together with

our reasons for not including them). The six broad

domains are: overall glucose levels, overall variability (dis-

persion), excursions (deviations from ‘normal’), variability

from one moment to the next, fasting levels and post-event

levels. GLU includes one variable from each domain and

brief explanations for these choices are given in

Supplementary Table 1. For example, we considered three

measures of dispersion that have been used in previous

publications—SD, CV and median absolute deviation

(MAD); GLU includes only MAD. This is because sensor

glucose values may not be normally distributed and the

number of sensor glucose values across which GLU will

calculate dispersion will be low (e.g. 1 day contains 288

values for 5 min epochs), meaning that SD and CV are un-

likely to be credible measures of dispersion. All GLU sum-

mary variables are independent of the length of the time

period for which they are calculated.

Overall glucose levels

Overall glucose levels are characterized by the AUC, and

specifically GLU derives the mean AUC per minute so that

these levels are comparable across time periods of different

lengths (e.g. night-time vs day-time).8 For each day, the

AUC is calculated using the trapezoid method,5 as the sum

of the area of the trapezoids created using linear interpola-

tion between sensor glucose values at adjacent time-points

(as described above). We divide by the number of minutes

in the time period (e.g. 1440 for whole days) to give the av-

erage glucose level (mmol/L) per min.

Proportion of time in hypo-, normo- and

hyper-glycaemia

We calculate the proportion of time spent in hypo-, normo-

and hyper-glycaemia.8,25,38 In patients with diabetes GLUs

default for hypo-glycaemia is <3.9mmol/L and for hyper-

glycaemia is �10.0 mmol/L (with normo-glycaemia defined

as �3.9mmol/L to <10 mmol/L).20,39 In a ‘healthy’ (non-di-

abetic) and non-pregnant population hypo-glycaemia is de-

fined as <3.3 mmol/L40 and we use the diabetes threshold

(�10 mmol/L) to define hyper-glycaemia, such that normo-

glycaemia defined as �3.3 to <10 mmol/L. For ‘healthy’

(non-diabetic) pregnant women we use the recommended

targets of glucose control during pregnancy for both type 1

and type 2 diabetes of 3.5–7.8 mmol/L, such that hypo-

glycaemia is defined as <3.5mmol/L and hyper-glycaemia is

defined as �7.8 mmol/L.20 The 7.8 mmol/L threshold is also

consistent with other guidelines such as the UK National

Institute for Health and Care Excellence (NICE) 2-h post-

prandial threshold for diagnosing gestational diabetes.41 As

already described, these diabetic and pregnancy specific

thresholds can be specified using GLU’s diabetic and preg-

nancy arguments, respectively. Because thresholds for defin-

ing hypo- and hyper-glycaemia (in ‘healthy’, diabetic

and pregnant populations) vary geographically and over-

time,42–44 and differ for other groups (e.g. patients in inten-

sive care units25), GLU also allows users to specify other

thresholds. For instance, a study in a diabetic population may
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wish to use the <3.0 mmol/L hypo-glycaemia threshold rec-

ommended by the International Hypoglycaemia Study Group

for clinically significant biochemical hypo-glycaemia.44

However, since GLU is intended to provide standard meas-

ures that can be compared (and as appropriate pooled)

across studies, where researchers do this a clear justifica-

tion should be given.

Overall variability

Although SD and CV are widely used measures of glucose

variability,9,30 as discussed above, the distribution of sen-

sor glucose values for a given participant may not be nor-

mally distributed. For this reason we use the MAD as a

measure of overall variability of sensor glucose levels, de-

fined as:

MAD ¼ median jSGi � median SGð Þj
� �

Thus, after calculating the distance of each sensor glucose

value from the median value, MAD is the median of these

distances.

Variability from one moment to the next

We capture variability in a person’s glucose levels across

time using a measure based on the length of the line of a

glucose trace (i.e. as if the peaks and troughs were

stretched out into a line). This idea was recently suggested

for CGM data45 and previously proposed as a measure

of complexity for time-series analyses in general.46

Intuitively, if you stretch out a glucose trace then the resul-

tant straight line will tend to be longer when a trace has

a larger overall variability (represented by MAD) and

is more complex (a higher number of peaks, valleys and

values46) see Supplementary Figure 3, available as

Supplementary data at IJE online and46 for examples. This

is distinct from MAD because, unlike MAD, the length of

the line is affected by the order of the sensor glucose val-

ues, i.e. how the sensor glucose values change from one

moment to the next (see Supplementary Figure 4, available

as Supplementary data at IJE online). Glycaemic variabil-

ity percentage (GVP)45 is a rescaling of the average length

of the line per minute such that a trace with no variability

(i.e. a constant trace) has a GVP of zero. A trace with a

GVP of 100% would imply that the length of the trace is

double the length of a straight glucose trace. We adapt this

measure to capture complexity but not overall variability

(in line with46), as overall variability is captured by MAD.

We standardize each glucose trace prior to deriving GVP

by subtracting the median and dividing by the MAD. We

refer to the GVP calculated using the standardized glucose

levels as standardized GVP (sGVP). Formally, sGVP is de-

fined as:

sGVP ¼ L

T Nð Þ � T 1ð Þ
� 1

� �
� 100

where

L ¼
XN�1

i¼1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðSGs ið Þ � SGs iþ 1ð ÞÞ2 þ ðT ið Þ � T iþ 1ð ÞÞ2

q

and T and SGs are vectors of timestamps and standardized

sensor glucose values, respectively, of length N.46 For ex-

ample, given a day period of CGM data after resampling

to 1 min epochs then T(10) and SGs(10) are the tenth min-

ute in this day and the standardized sensor glucose value

on this tenth minute, respectively.

This measure satisfies three useful properties: (i) invari-

ance to the intervals between time-points, (ii) invariance to

differences in overall variability and (iii) invariance to dif-

ferences in the duration of the CGM trace. The first prop-

erty is satisfied by using a measure based on the length of

the line (see Supplementary Figure 5a, available as

Supplementary data at IJE online) and means that results

of work using different intervals can be compared or meta-

analysed. The second property is satisfied by standardizing

the CGM trace before calculating GVP (see Supplementary

Figure 5b, available as Supplementary data at IJE online)

and means that associations with sGVP are not due to a re-

lationship with overall variability (i.e. MAD). The third

property is satisfied by dividing by the total duration in the

above equation (see Supplementary Figure 5c, available as

Supplementary data at IJE online) and means that variabil-

ity from one moment to the next can be compared across

time periods of different length.

Fasting glucose proxy

Although fasting glucose levels have previously been ap-

proximated using CGM data, the methods used to derive

this measure can be unclear.47,48 In studies where meal

times are known, fasting glucose levels may be inferred us-

ing CGM data recorded before breakfast or after at least

7 h fasting,5,26,49 e.g. using the mean of the six consecutive

values (with 5 min intervals) before breakfast.26 Others

have used glucose levels during particular periods of the

night-time as fasting levels, when meal times are not

known.50 This can be problematic if participants eat dur-

ing the night-time period,5 which occurs in an important

minority who may be different in terms of their health and

health-related behaviours to those who do not eat during

the night.51 GLU derives a general proxy measure of fast-

ing glucose that does not require knowledge of meal times,
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calculated as the mean of the 30 lowest consecutive

minutes (equating to 6 CGM values at 5 min intervals) dur-

ing the night-time.

Event statistics

Studies may ask participants to report their meal times and

where this is the case GLU will generate three statistics de-

scribing subsequent glucose levels: time to peak, and glu-

cose levels 1- and 2-h post-prandial.5

Time to peak is calculated as the number of minutes from

the meal to the next peak in sensor glucose values—i.e. the

nearest subsequent sensor glucose value SGt at time t where

SGt1 < SGt > SGt2, and t1 and t2 are the nearest previous

and subsequent time-points to t, respectively, where

SGt 6¼ SGt1 and SGt 6¼ SGt2. We cannot simply find the

time-point with a higher glucose value than the time-points

directly before and after, as the peak may consist of a plateau

where multiple time-points have the same value.

The 1-h and 2-h post-prandial glucose measures are cal-

culated as the AUC during the 15-min period 1- and 2-h,

respectively, after the meal was recorded. We also calculate

the 1- and 2-h AUC for exercise and medication events,

when this information is available. In addition to deriving

the average of these summary variables on each included

day, and across all included days, the saveevents argument

can be used to output the summary variables for each

event. This can be useful where the number of events

across days is highly variable such that averaging within

and across days may not be appropriate.

Data visualization

The following plots are produced by GLU.

• Sensor glucose trace plots for all participants that can be

visually inspected. This plot also includes indicators of

events (where these are provided) including the timing of

a meal, exercise, use of relevant medications and capil-

lary blood glucose measurement levels. Identified outlier

values and imputed time periods (as described above) are

also shown on these plots.

• Poincare plots to illustrate the stability of each partici-

pants blood glucose levels.10,35,38 Each point on a

Poincare plot is the sensor glucose level at time-point t

(on the x-axis) against the sensor glucose level at time-

point t þ 1 on the y-axis. Thus, where a participant’s

sensor glucose levels change slowly their Poincare plot

will be aligned along the ascending diagonal, but those

with erratic (and potentially erroneous) sensor glucose

levels will have a spread further from the ascending

diagonal.

Example sensor glucose trace plots and Poincare plots are

shown in Supplementary Figure 6, available as

Supplementary data at IJE online, and in the GLU GitHub

repository.

Usage

In this example, we demonstrate GLU by deriving GLU

summary variables from CGM data measured during preg-

nancy and postnatally, and exploring associations of body

mass index (BMI) with these variables during pregnancy.

Study sample

We used data from the Avon Longitudinal Study of Parents

and Children-Generation 2 (ALSPAC-G2).52 The ALSPAC

study website contains details of the data that are available

through a fully searchable data dictionary: http://www.

bris.ac.uk/alspac/researchers/data-access/data-dictionary/.

The original ALSPAC cohort (women recruited during an

index pregnancy in the early 1990s; ALSPAC-G0) and

their index children (ALSPAC-G1) have been described in

full elsewhere.1,2 ALSPAC-G2 refers to the children of

ALSPAC-G1 and recruitment to this cohort began in June

2012, and further information can be found at http://

www.alspac.bris.ac.uk. The data presented here come

from a pilot study of CGM in pregnant/postnatal women,

which began recruiting ALSPAC-G1 women (or female

partners of ALSPAC-G1 men) during their pregnancy in

February 2016. These women were invited to wear a

Medtronic iPro2 CGM on their buttock, abdomen or arm,

for 6 days, at up to four time-points: in early f<28 weeks

gestation [median¼ 21 weeks gestation, interquartile range

(IQR) ¼ (18, 23) range ¼ (6, 27)]g and late f�28 weeks

gestation [median¼ 34 weeks gestation, IQR ¼ (32, 35)

range ¼ (28, 36)]g pregnancy, and 6- and 12-months

postnatal [median¼ 28 weeks, IQR ¼ (26, 31) and

median¼ 58 weeks, IQR ¼ (55, 63.5), respectively]. We re-

fer to the CGM data collected at a particular time-point

for a particular participant as a CGM instance. While

wearing the device, participants were asked to measure

their capillary blood glucose levels by finger prick four

times daily, for CGM calibration, and record mealtimes in

a hand-written diary.

In this pilot a total of 96 CGM instances had been col-

lected, in 63 women. Using GLU’s complete days ap-

proach, nine of the 96 instances were excluded due to

missing data (one recorded no sensor glucose data and

eight had no complete days). One participant has two early

pregnancy time-points corresponding to two different

pregnancies; we excluded the time-point for the later preg-

nancy. We also excluded one participant (with 1 time-
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point) who did not have a measure of BMI. Thus, our pilot

includes 85 CGM instances (including a total of 321 in-

cluded days)—29 in early pregnancy, 25 in late pregnancy,

15 at 6 months postnatal and 16 at 12 months postnatal.

These 85 instances were measured in 61 women. Imputing

the sensor glucose data using the approximal and other

day imputation approaches both resulted in an additional

2 CGM instances with at least 1 included day, for 2 addi-

tional participants. Our approximal imputed dataset

includes 87 CGM instances, with a total of 333 included

days, in 63 women. Our other day imputed dataset

includes 88 CGM instances, with a total of 357 included

days, in 63 women. Supplementary Table 3, available as

Supplementary data at IJE online, shows the patterns of re-

peat instances within our sample, using the complete days,

approximal imputation and other day imputation

approaches.

Women’s weight and height were measured at the clinic

visit when the CGM device was inserted and used to calcu-

late BMI (kg/m2). We considered age, parity and gesta-

tional age at CGM measurement as potential confounding

factors. Age and parity were reported by the woman; gesta-

tional age was calculated from the dates for which the

CGM was worn and the woman’s expected date of delivery

based on her antenatal records (for the vast majority this

would be based on a dating scan).

Analyses

Since GLU uses different thresholds for defining hypo-

normo- and hyper- glycaemia in pregnant compared with

non-pregnant women, we divided our CGM instances into

pregnancy and postnatal subsets. For the pregnancy subset,

we ran GLU with the pregnancy argument. For the postna-

tal subset, we used the default GLU settings (i.e. we did not

specify any optional parameters). For both, we ran GLU

with the complete days approach (which is used by de-

fault), and the approximal and other day imputation

approaches. We manually reviewed the trace and Poincare

plots to determine whether there may be any anomalies.

Poincare plots show how a person’s glucose levels vary

across moments in time (specifically one minute to the

next, because GLU resamples CGM data to 1-min intervals

as a pre-processing step). A deviation from the trend along

the ascending diagonal on this plot may reflect an errone-

ous sensor glucose value in the original CGM data, rather

than true variation of glucose levels. Sensor glucose values

will tend to vary smoothly on CGM trace plots so

erratic changes shown on these plots may also indicate er-

roneous data.

We summarized our derived GLU summary variables at

each of the two pregnancy and two postnatal time-points

using median and IQR. We then examined the association

between early pregnancy BMI (exposure) and GLU CGM-

derived variables during pregnancy, using the 43 women

with a measure during pregnancy. Of these 43 women 32

had just one set of CGM data during pregnancy (18 early-

and 14 late-pregnancy) and 11 had data for both early and

late pregnancy. For the main analyses we used late preg-

nancy data for the 11 participants with data at both preg-

nancy time-points. We also undertook a sensitivity analysis

in which we instead used early pregnancy measures for

these 11 participants. We used linear regression to estimate

the association of BMI with the following glucose trace

summary variables: overall mean glucose level, MAD,

sGVP, fasting glucose proxy, post-prandial time-to-peak

and post-prandial 1- and 2-h AUC. MAD, sGVP and post-

prandial time-to-peak were right skewed and hence log

transformed to achieve approximately normally distribu-

tions of residuals from the regression model. We converted

the proportion of time spent in hypo-, normo- and hyper-

glycaemia to the number of minutes, by multiplying these

by the number of minutes in the defined period (e.g. 1440

in whole days). We then estimated the association of BMI

with these outcomes using negative binomial regression.

Our analyses were performed using Stata version 15, and

code is available at https://github.com/MRCIEU/GLU-

UsageExample/. Git tag v0.2 corresponds to the version

presented here.

Results

In this pilot we did not identify any outlier time-points

having a glucose value with a large deviation from the glu-

cose values at previous or subsequent time-points

(Supplementary Figure 6 shows some representative trace

plots illustrating their smooth nature). Correlations be-

tween summary variables are given in Supplementary

Table 4, available as Supplementary data at IJE online.

The smallest correlation was between MAD and post-

prandial time to peak [Pearson’s r ¼ �0.005 (P¼ 0.98)],

whereas the largest was between proportion of time spent

in hypo- and normo- glycaemia [Pearson’s r ¼ �0.958

(P< 0.01)]. Our sample rarely reached hyper-glycaemic

glucose levels [e.g. median 0.000 (interquartile range:

0.000, 0.003) in early pregnancy; Supplementary Table 5,

available as Supplementary data at IJE online], such that

correlations between time spent in hypo-glycaemia and

normo-glycaemia were close to �1 (Supplementary Table

4). While GLU gives the sGVP summary variable,

Supplementary Table 4 also includes correlations with

GVP (that uses the unstandardized glucose trace) for com-

parison. MAD was positively correlated with GVP

[Pearson’s r¼ 0.86 (P<0.01)] and negatively correlated
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with sGVP [Pearson’s r ¼ �0.54 (P<0.01)]. We hypothe-

sized that this is because a glucose trace with a larger over-

all variability (characterized by MAD) will on average

have a lower frequency (intuitively the bigger the deviation

the longer it will take to return from this deviation) result-

ing in a shorter ‘length of the line’ of the glucose trace after

standardization. To check this, we derived a simple mea-

sure of the number of peaks in each trace and found this

had a negative correlation with MAD [Pearson’s r ¼ �0.24

(P¼ 0.13)]. Overall, sGVP was less correlated with other

GLU summary variables, compared with both MAD and

(unstandardized) GVP.

Overall mean glucose levels were very similar

(�5 mmol/L) across the four time-points (Supplementary

Table 5). However, these similar overall glucose levels con-

ceal very different patterns of variation in glucose across

the four time-points and in the day- vs the night-time.

MAD values were higher during pregnancy (both early and

late) than postnatally, and higher during the day-time com-

pared with the night-time. Fasting glucose levels were, on

average, higher 12 months postnatally compared with early

pregnancy. Whereas most time was spent normo-glycaemic

both during pregnancy and in the postnatal period, the

amount of time spent with levels that fulfilled the criteria

for hypo-glycaemia was higher during pregnancy com-

pared with postnatally. In interpreting the proportion of

time spent in different glycaemic states across these four

time periods it is important to remember that we used the

pregnancy argument for the early and late pregnancy meas-

ures but the default (non-pregnancy, ‘healthy’) option for

the postnatal measures. Hence different thresholds were

used to define hypo-, normo- and hyper-glycaemic ranges

in pregnancy vs postnatally. It is possible that in some

women pregnancy-related changes in glucose levels might

persist postnatally, so we repeated the analyses with the

pregnancy function applied to the postnatal time-points.

The proportion of time spent in normo-glycaemia postna-

tally was lower when using the pregnancy argument, be-

cause the pregnancy target normo-glycaemia range is

narrower. Results were broadly similar when missing

data at some time-points were imputed using both the

approximal and other day approaches (Figure 2 and

Supplementary Table 6, available as Supplementary data

at IJE online).

In analyses using complete days, approximally imputed

and other day imputed data a higher BMI during preg-

nancy was associated with higher overall mean glucose lev-

els during both the day- and night-time (as measured by

AUC), higher time spent in hyper-glycaemia during the

night-time and shorter post-prandial time to peak, with

similar magnitude of association across the three different

approaches to missing data (Figure 2). For example, during

the night-time a 1 kg/m2 higher BMI was associated with a

0.024 mmol/L higher glucose level per min (95% confi-

dence interval: 0.004, 0.044), after adjusting for covariates

(age, parity and gestational age). A higher BMI during

pregnancy was associated with higher overall variability of

glucose levels during the night-time (as measured by

MAD), but we found little evidence of an association with

the trace complexity (as measured by sGVP) although this

may be due to insufficient statistical power. Results were

broadly consistent when we used the early pregnancy

measures for the 11 women with both early and late preg-

nancy results (Supplementary Figure 7, available as

Supplementary data at IJE online).

Conclusions

In this paper, we have presented GLU, an open-source tool

for researchers working with CGM data. GLU automati-

cally performs quality control and derives a set of summary

variables capturing key characteristics in these data.

Widespread use of this tool across different research popu-

lations will help to identify the key measurements from

CGM that have most clinical relevance in different con-

texts and groups of patients, which in turn will inform the

most efficient and effective use of CGM in clinical

practice.

There are other previously published tools for analysing

CGM data, and Supplementary Table 7, available as

Supplementary data at IJE online, provides a comparison

of these with GLU. Compared with each of these, GLU is

the only one to implement outlier detection. Also, GLU’s

quality control ensures that only whole days (either before

or after imputation) are included in analyses to minimize

bias. Our imputation methods seek to maintain the integ-

rity of the data where the imputed regions are realistic

CGM sequences (e.g. in contrast to linear interpolation).

While the recently published CGManalyzer tool has a dia-

betes focus,53 GLU is a general tool for researchers analy-

sing CGM data in any population. We have developed this

software so that it can be used to produce a standard set of

CGM summary variables in any population and study

type, including ‘healthy’ populations, whether pregnant or

not, as well as in studies of people with diabetes, in cohort,

case-control or randomized trials. Using a single tool for

research in these different populations will aid comparison

of summary variables and results across them. The

Glycemic Variability Analyzer Program (GVAP) tool54 is

implemented in MATLAB and, hence, requires a licence to

use, whereas GLU can be freely used by anyone. In con-

trast to GVAP, GLU can be used directly with CGM

data from several devices. Another tool called EasyGV is

implemented as a Microsoft Excel workbook;55 it is not
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open-source (i.e. it is not possible to view the macro code),

hindering research reproducibility, and the ‘point and

click’ interface means it is difficult to integrate program-

matically within a research pipeline. Systems provided by

CGM companies, such as the Medtronics Carelink iPro

website, also provide summary variables but using these

for research would hinder consistency across studies since

the summary variables and derivations used would depend

on the CGM device, and these are also not open-source,

hindering transparency.

In addition to the quality control steps implemented in

GLU, another key strength is our choice of summary varia-

bles, where these characteristics each represent one of six

broad domains. For example, overall glucose levels and

variability from one moment to the next are represented by

the AUC and sGVP, respectively. Our choice of summary

variable from each domain was informed by previous

work, interpretability of each variable, and the statistical

properties of CGM data. For example, given the skewed

nature of glucose data, GLU uses MAD as a measure of

spread, rather than the SD or CV (see Supplementary

Table 1).

Previously, there has been a lack of consensus in rela-

tion to the methods used to derive variables from CGM

data. Furthermore, methodological details have often

been missing from research articles, making it difficult to

replicate studies and compare results across studies.5,28

Therefore, our main aim was to improve research prac-

tice by providing an open-source software package for

CGM research, to improve transparency and consistency

across studies. Using GLU to perform CGM processing

and persuading researchers to present findings using all

of its summary measures (even if some are presented as

supplementary material) should improve the consistency

across studies and hence the opportunity for replication

and pooling of results, which is important for improving

the robustness of research in this field. Furthermore, over

time this would allow insights to emerge related to which

glucose trace properties are important for different popu-

lations and in relation to different exposures and out-

comes. For example, our pilot data suggest that, during

pregnancy, BMI is positively associated with mean glu-

cose levels, including during the day and night, as well as

time spent hyper-glycaemic and overall variability of glu-

cose levels during the night-time, but has little associa-

tion with complexity of the glucose trace. We

acknowledge that these are pilot data and for some of the

outcomes estimates are imprecise (with wide confidence

intervals). As larger CGM datasets become available it

will be possible to estimate associations with greater

Figure 2. Associations of BMI with GLU summary variables. Estimates using ‘complete days’, ‘approximal imputed’ and ‘other day’ imputed data,

after adjustment for covariates (age, parity and gestational age at CGM measurement). Estimates use the mean of the respective summary variable

across all included days. All AUC measures are computed as the average AUC per minute. Parts (a) and (b) have different scales, and hence are inter-

preted as: (a) difference in means of outcome, for a 1 kg/m2 higher BMI; (b) percentage difference of outcome, for a 1 kg/m2 higher BMI. n complete

data: 43 (except postprandial n: 33; time to peak n: 32); n approximal imputed: 44 (except postprandial and time to peak n: 33); n other day imputed:

44 (except postprandial and time to peak n: 32). Meal event measures could not be calculated for some participants (e.g. because they have no

recorded meals on included days or no peak after a recorded meal event) such that these summaries are based on a subset of our sample. Analyses

included one summary value per participant. Where a participant had measures at both pregnancy time-points this analysis used the later pregnancy

time-point. See Supplementary Figure 7 for results of our sensitivity analysis including instead the early pregnancy time-point for these participants.

Number of participants with both time-points was 11 in complete days and approximal imputed data, and 12 in other day imputed data.
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precision . As this field matures we plan to update GLU

with any additional summary variables or options (e.g.

revised thresholds for hypo-, normo- and hyper-

glycaemia) that emerge and we encourage researchers to

send feedback on the tool and suggest additions (via the

corresponding author email).

Supplementary Data

Supplementary data are available at IJE online.
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