236 research outputs found

    Multipole Amplitudes of Pion Photoproduction on Nucleons up to 2GeV within Dispersion Relations and Unitary Isobar Model

    Full text link
    Two approaches for analysis of pion photo- and electroproduction on nucleons in the resonance energy region are checked at Q2=0Q^2=0 using the results of GWU(VPI) partial-wave analysis of photoproduction data. The approaches are based on dispersion relations and unitary isobar model. Within dispersion relations good description of photoproduction multipoles is obtained up to W=1.8GeVW=1.8 GeV. Within unitary isobar model, modified with increasing energy by incorporation of Regge poles, and with unified Breit-Wigner parametrization of resonance contributions, good description of photoproduction multipoles is obtained up to W=2GeVW=2 GeV.Comment: 23 pages, LaTe

    Atom-optics hologram in the time domain

    Full text link
    The temporal evolution of an atomic wave packet interacting with object and reference electromagnetic waves is investigated beyond the weak perturbation of the initial state. It is shown that the diffraction of an ultracold atomic beam by the inhomogeneous laser field can be interpreted as if the beam passes through a three-dimensional hologram, whose thickness is proportional to the interaction time. It is found that the diffraction efficiency of such a hologram may reach 100% and is determined by the duration of laser pulses. On this basis a method for reconstruction of the object image with matter waves is offered.Comment: RevTeX, 13 pages, 8 figures; minor grammatical change

    Covid-19 and Tobacco Cessation:Lessons from India

    Get PDF
    OBJECTIVES: The Government of India prohibited the sale of tobacco products during the COVID-19 lockdown to prevent spread of the SARS-CoV-2 virus. This study assessed the tobacco cessation behaviour and its predictors among adult tobacco users during the initial COVID-19 lockdown period in India. STUDY DESIGN: : Cross-sectional study. METHODS: A cross-sectional study was conducted with 801 adult tobacco users (both smoking and smokeless tobacco) in two urban metropolitan cities of India over a 2-month period (July–August 2020). The study assessed complete tobacco cessation and quit attempts during the lockdown period. Logistic and negative binomial regression models were used to study correlates of tobacco cessation and quit attempts, respectively. RESULTS: In total, 90 (11.3%) tobacco users reported that they had quit using tobacco after the COVID-19 lockdown period. Overall, a median of two quit attempts (interquartile range [IQR] 0–6) were made by tobacco users. Participants with good knowledge on the harmful effects of tobacco use and COVID-19 were significantly more likely to quit tobacco use (odds ratio [OR] 2.2; 95% confidence interval [CI] 1.2–4.0) and reported more quit attempts (incidence risk ratio [IRR] 5.7; 95% CI 2.8-11.8] compared with those with poor knowledge. Participants who had access to tobacco products were less likely to quit tobacco use compared with those who had no access (OR 0.3; 95% CI 0.2–0.5]. CONCLUSIONS: Access restrictions and correct knowledge on the harmful effects of tobacco use and COVID-19 can play an important role in creating a conducive environment for tobacco cessation among users

    Pion light-cone wave function and pion distribution amplitude in the Nambu-Jona-Lasinio model

    Get PDF
    We compute the pion light-cone wave function and the pion quark distribution amplitude in the Nambu-Jona-Lasinio model. We use the Pauli-Villars regularization method and as a result the distribution amplitude satisfies proper normalization and crossing properties. In the chiral limit we obtain the simple results, namely phi_pi(x)=1 for the pion distribution amplitude, and = -M / f_pi^2 for the second moment of the pion light-cone wave function, where M is the constituent quark mass and f_pi is the pion decay constant. After the QCD Gegenbauer evolution of the pion distribution amplitude good end-point behavior is recovered, and a satisfactory agreement with the analysis of the experimental data from CLEO is achieved. This allows us to determine the momentum scale corresponding to our model calculation, which is close to the value Q_0 = 313 MeV obtained earlier from the analogous analysis of the pion parton distribution function. The value of is, after the QCD evolution, around (400 MeV)^2. In addition, the model predicts a linear integral relation between the pion distribution amplitude and the parton distribution function of the pion, which holds at the leading-order QCD evolution.Comment: mistake in Eq.(38) correcte

    Spectral quark model and low-energy hadron phenomenology

    Get PDF
    We propose a spectral quark model which can be applied to low energy hadronic physics. The approach is based on a generalization of the Lehmann representation of the quark propagator. We work at the one-quark-loop level. Electromagnetic and chiral invariance are ensured with help of the gauge technique which provides particular solutions to the Ward-Takahashi identities. General conditions on the quark spectral function follow from natural physical requirements. In particular, the function is normalized, its all positive moments must vanish, while the physical observables depend on negative moments and the so-called log-moments. As a consequence, the model is made finite, dispersion relations hold, chiral anomalies are preserved, and the twist expansion is free from logarithmic scaling violations, as requested of a low-energy model. We study a variety of processes and show that the framework is very simple and practical. Finally, incorporating the idea of vector-meson dominance, we present an explicit construction of the quark spectral function which satisfies all the requirements. The corresponding momentum representation of the resulting quark propagator exhibits only cuts on the physical axis, with no poles present anywhere in the complex momentum space. The momentum-dependent quark mass compares very well to recent lattice calculations. A large number of predictions and relations can be deduced from our approach for such quantities as the pion light-cone wave function, non-local quark condensate, pion transition form factor, pion valence parton distribution function, etc.Comment: revtex, 24 pages, 3 figure

    Solution of the Kwiecinski evolution equations for unintegrated parton distributions using the Mellin transform

    Full text link
    The Kwiecinski equations for the QCD evolution of the unintegrated parton distributions in the transverse-coordinate space (b) are analyzed with the help of the Mellin-transform method. The equations are solved numerically in the general case, as well as in a small-b expansion which converges fast for b Lambda_QCD sufficiently small. We also discuss the asymptotic limit of large bQ and show that the distributions generated by the evolution decrease with b according to a power law. Numerical results are presented for the pion distributions with a simple valence-like initial condition at the low scale, following from chiral large-N_c quark models. We use two models: the Spectral Quark Model and the Nambu--Jona-Lasinio model. Formal aspects of the equations, such as the analytic form of the b-dependent anomalous dimensions, their analytic structure, as well as the limits of unintegrated parton densities at x -> 0, x -> 1, and at large b, are discussed in detail. The effect of spreading of the transverse momentum with the increasing scale is confirmed, with growing asymptotically as Q^2 alpha(Q^2). Approximate formulas for for each parton species is given, which may be used in practical applications.Comment: 18 pages, 6 figures, RevTe

    Leptogenesis and rescattering in supersymmetric models

    Get PDF
    The observed baryon asymmetry of the Universe can be due to the B−LB-L violating decay of heavy right handed (s)neutrinos. The amount of the asymmetry depends crucially on their number density. If the (s)neutrinos are generated thermally, in supersymmetric models there is limited parameter space leading to enough baryons. For this reason, several alternative mechanisms have been proposed. We discuss the nonperturbative production of sneutrino quanta by a direct coupling to the inflaton. This production dominates over the corresponding creation of neutrinos, and it can easily (i.e. even for a rather small inflaton-sneutrino coupling) lead to a sufficient baryon asymmetry. We then study the amplification of MSSM degrees of freedom, via their coupling to the sneutrinos, during the rescattering phase which follows the nonperturbative production. This process, which mainly influences the (MSSM) D−D-flat directions, is very efficient as long as the sneutrinos quanta are in the relativistic regime. The rapid amplification of the light degrees of freedom may potentially lead to a gravitino problem. We estimate the gravitino production by means of a perturbative calculation, discussing the regime in which we expect it to be reliable.Comment: (20 pages, 6 figures), references added, typos corrected. Final version in revte

    Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV II: photon-induced results

    Full text link
    We present a nucleon resonance analysis by simultaneously considering all pion- and photon-induced experimental data on the final states gamma N, pi N, 2 pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The omega N production mechanism is dominated by large P_{11}(1710) and P_{13}(1900) contributions. In this second part we present the results on the photoproduction reactions and the electromagnetic properties of the resonances. The inclusion of all important final states up to sqrt(s) = 2 GeV allows for estimates on the importance of the individual states for the GDH sum rule.Comment: 41 pages, 26 figures, discussion extended, typos corrected, references updated, to appear in Phys. Rev.

    Vector meson production and nucleon resonance analysis in a coupled-channel approach for energies m_N < sqrt(s) < 2 GeV I: pion-induced results and hadronic parameters

    Full text link
    We present a nucleon resonance analysis by simultaneously considering all pion- and photon-induced experimental data on the final states gamma N, pi N, 2 pi N, eta N, K Lambda, K Sigma, and omega N for energies from the nucleon mass up to sqrt(s) = 2 GeV. In this analysis we find strong evidence for the resonances P_{31}(1750), P_{13}(1900), P_{33}(1920), and D_{13}(1950). The omega N production mechanism is dominated by large P_{11}(1710) and P_{13}(1900) contributions. In this first part, we present the results of the pion-induced reactions and the extracted resonance and background properties with emphasis on the difference between global and purely hadronic fits.Comment: 54 pages, 26 figures, discussion extended, typos corrected, references updated, to appear in Phys. Rev.

    The Alaska Arctic Vegetation Archive (AVA-AK)

    Get PDF
    The Alaska Arctic Vegetation Archive (AVA-AK, GIVD-ID: NA-US-014) is a free, publically available database archive of vegetation-plot data from the Arctic tundra region of northern Alaska. The archive currently contains 24 datasets with 3,026 non-overlapping plots. Of these, 74% have geolocation data with 25-m or better precision. Species cover data and header data are stored in a Turboveg database. A standardized Pan Arctic Species List provides a consistent nomenclature for vascular plants, bryophytes, and lichens in the archive. A web-based online Alaska Arctic Geoecological Atlas (AGA-AK) allows viewing and downloading the species data in a variety of formats, and provides access to a wide variety of ancillary data. We conducted a preliminary cluster analysis of the first 16 datasets (1,613 plots) to examine how the spectrum of derived clusters is related to the suite of datasets, habitat types, and environmental gradients. We present the contents of the archive, assess its strengths and weaknesses, and provide three supplementary files that include the data dictionary, a list of habitat types, an overview of the datasets, and details of the cluster analysis
    • 

    corecore