4,109 research outputs found

    Synthesis of Natural Products by the Oxidation of Phenols

    Get PDF
    Introduction - The oxidative coupling of phenols, as a biogenetic route to many natural products is discussed and an account of the recent evidence in support of the theory is given. Part I - The synthesis of the depside dihydropicrolichenic acid from olivetol aldehyde is described. Several reagents were tried with a view to causing the oxidative coupling to picrolichenic acid. The vital coupling reaction was finally achieved by using manganese dioxide suspended in benzene. A partial resolution of picrolichenic acid was obtained via the quinine methohydroxide salt. Part II - The total syntheses of the mould metabolites, geodin and erdin, were attempted. Two routes to the intermediate benzo-phenones, dihydrogeodin and dihydroerdin, were unsuccessful. The first route required the condensation of a dichloro-p-orsellinic acid with a suitable derivative of methyl 3-hydroxy-5-methoxy-benzoate by a Friedel and Craft's reaction. The second route reversed the roles of the reactants by using the anhydrides of 5-benzyloxy- and 5-hydroxy-3-methoxyphthalic acid and attempting to condense them with 2,6-dichloroorcinol. Partial syntheses of geodin and erdin were achieved by oxidative coupling of the dihydro compounds, obtained from natural geodin and erdin, with alkaline potassium ferricyanide. Part III - The synthesis of colchicine by oxidative coupling of a phenolic precursor, 1-(3',4'-dimethoxy-5'-hydroxyphenyl)-3-(beta-tropolonyl)-propane, was attempted. The precursor was obtained by condensation of a suitably substituted phenylacetaldehyde with the anhydride of 2-carboxy-4-hydroxy-3-oxocycloheptatrienyl-acetie acid with subsequent pyrolysis, reduction and hydrolysis. All attempts to induce ring closure to the tricyclic system of desaoetylamidocolchiceine by a variety of oxidants were unsuccessful

    Investigation of excited electronic species using molecular beam techniques

    Get PDF

    Ultrasonic locating devices for central venous cannulation: meta-analysis

    Get PDF
    OBJECTIVES: To assess the evidence for the clinical effectiveness of ultrasound guided central venous cannulation. DATA SOURCES: 15 electronic bibliographic databases, covering biomedical, science, social science, health economics, and grey literature. DESIGN: Systematic review and meta-analysis of randomised controlled trials. POPULATIONS: Patients scheduled for central venous access. INTERVENTION REVIEWED: Guidance using real time two dimensional ultrasonography or Doppler needles and probes compared with the anatomical landmark method of cannulation. DATA EXTRACTION: Risk of failed catheter placement (primary outcome), risk of complications from placement, risk of failure on first attempt at placement, number of attempts to successful catheterisation, and time (seconds) to successful catheterisation. DATA SYNTHESIS: 18 trials (1646 participants) were identified. Compared with the landmark method, real time two dimensional ultrasound guidance for cannulating the internal jugular vein in adults was associated with a significantly lower failure rate both overall (relative risk 0.14, 95% confidence interval 0.06 to 0.33) and on the first attempt (0.59, 0.39 to 0.88). Limited evidence favoured two dimensional ultrasound guidance for subclavian vein and femoral vein procedures in adults (0.14, 0.04 to 0.57 and 0.29, 0.07 to 1.21, respectively). Three studies in infants confirmed a higher success rate with two dimensional ultrasonography for internal jugular procedures (0.15, 0.03 to 0.64). Doppler guided cannulation of the internal jugular vein in adults was more successful than the landmark method (0.39, 0.17 to 0.92), but the landmark method was more successful for subclavian vein procedures (1.48, 1.03 to 2.14). No significant difference was found between these techniques for cannulation of the internal jugular vein in infants. An indirect comparison of relative risks suggested that two dimensional ultrasonography would be more successful than Doppler guidance for subclavian vein procedures in adults (0.09, 0.02 to 0.38). CONCLUSIONS: Evidence supports the use of two dimensional ultrasonography for central venous cannulation

    Precise Determination of Electroweak Parameters in Neutrino-Nucleon Scattering

    Full text link
    A systematic error in the extraction of sin2θW\sin^2 \theta_W from nuclear deep inelastic scattering of neutrinos and antineutrinos arises from higher-twist effects arising from nuclear shadowing. We explain that these effects cause a correction to the results of the recently reported significant deviation from the Standard Model that is potentially as large as the deviation claimed, and of a sign that cannot be determined without an extremely careful study of the data set used to model the input parton distribution functions.Comment: 3pages, 0 figures, version to be published by IJMP

    Hippocampal Replay of Extended Experience

    Get PDF
    During pauses in exploration, ensembles of place cells in the rat hippocampus re-express firing sequences corresponding to recent spatial experience. Such “replay” co-occurs with ripple events: short-lasting (∼50–120 ms), high-frequency (∼200 Hz) oscillations that are associated with increased hippocampal-cortical communication. In previous studies, rats exploring small environments showed replay anchored to the rat's current location and compressed in time into a single ripple event. Here, we show, using a neural decoding approach, that firing sequences corresponding to long runs through a large environment are replayed with high fidelity and that such replay can begin at remote locations on the track. Extended replay proceeds at a characteristic virtual speed of ∼8 m/s and remains coherent across trains of ripple events. These results suggest that extended replay is composed of chains of shorter subsequences, which may reflect a strategy for the storage and flexible expression of memories of prolonged experience.Massachusetts Institute of Technology. Department of Brain and Cognitive Science (Singleton Fellowship)National Institutes of Health (U.S.) (grant MH061976

    Two-way coupling of FENE dumbbells with a turbulent shear flow

    Full text link
    We present numerical studies for finitely extensible nonlinear elastic (FENE) dumbbells which are dispersed in a turbulent plane shear flow at moderate Reynolds number. The polymer ensemble is described on the mesoscopic level by a set of stochastic ordinary differential equations with Brownian noise. The dynamics of the Newtonian solvent is determined by the Navier-Stokes equations. Momentum transfer of the dumbbells with the solvent is implemented by an additional volume forcing term in the Navier-Stokes equations, such that both components of the resulting viscoelastic fluid are connected by a two-way coupling. The dynamics of the dumbbells is given then by Newton's second law of motion including small inertia effects. We investigate the dynamics of the flow for different degrees of dumbbell elasticity and inertia, as given by Weissenberg and Stokes numbers, respectively. For the parameters accessible in our study, the magnitude of the feedback of the polymers on the macroscopic properties of turbulence remains small as quantified by the global energy budget and the Reynolds stresses. A reduction of the turbulent drag by up to 20% is observed for the larger particle inertia. The angular statistics of the dumbbells shows an increasing alignment with the mean flow direction for both, increasing elasticity and inertia. This goes in line with a growing asymmetry of the probability density function of the transverse derivative of the streamwise turbulent velocity component. We find that dumbbells get stretched referentially in regions where vortex stretching or bi-axial strain dominate the local dynamics and topology of the velocity gradient tensor.Comment: 20 pages, 10 Postscript figures (Figures 5 and 10 in reduced quality

    SPIFI: a Direct-Detection Imaging Spectrometer for Submillimeter Wavelengths

    Get PDF
    The South Pole Imaging Fabry-Perot Interferometer (SPIFI) is the first instrument of its kind -a direct-detection imaging spectrometer for astronomy in the submillimeter band. SPIFI ’s focal plane is a square array of 25 silicon bolometers cooled to 60 mK; the spectrometer consists of two cryogenic scanning Fabry-Perot interferometers in series with a 60-mK bandpass filter. The instrument operates in the short submillimeter windows (350 and 450 μm) available from the ground, with spectral resolving power selectable between 500 and 10,000. At present, SPIFI’s sensitivity is within a factor of 1.5-3 of the photon background limit, comparable with the best heterodyne spectrometers. The instrument ’s large bandwidth and mapping capability provide substantial advantages for specific astrophysical projects, including deep extragalactic observations. We present the motivation for and design of SPIFI and its operational characteristics on the telescope

    Two-fluid matter-quintessence FLRW models: energy transfer and the equation of state of the universe

    Get PDF
    Recent observations support the view that the universe is described by a FLRW model with Ωm00.3\Omega_m^0 \approx 0.3, ΩΛ00.7\Omega_{\Lambda}^0 \approx 0.7, and w1/3w \leq -1/3 at the present epoch. There are several theoretical suggestions for the cosmological Λ\Lambda component and for the particular form of the energy transfer between this dark energy and matter. This gives a strong motive for a systematic study of general properties of two-fluid FLRW models. We consider a combination of one perfect fluid, which is quintessence with negative pressure (pQ=wϵQp_Q = w\epsilon_Q), and another perfect fluid, which is a mixture of radiation and/or matter components with positive pressure (p=βϵmp = \beta \epsilon_m), which define the associated one-fluid model (p=γϵp = \gamma \epsilon). We introduce a useful classification which contains 4 classes of models defined by the presence or absence of energy transfer and by the stationarity (w=const.w = const. and β=const.\beta = const.) or/and non stationarity (ww or β\beta time dependent) of the equations of state. It is shown that, for given ww and β\beta, the energy transfer defines γ\gamma and, therefore, the total gravitating mass and dynamics of the model. We study important examples of two-fluid FLRW models within the new classification. The behaviour of the energy content, gravitating mass, pressure, and the energy transfer are given as functions of the scale factor. We point out three characteristic scales, aEa_E, aPa_{\cal P} and aMa_{\cal M}, which separate periods of time in which quintessence energy, pressure and gravitating mass dominate. Each sequence of the scales defines one of 6 evolution types

    Short-Pulse, Compressed Ion Beams at the Neutralized Drift Compression Experiment

    Full text link
    We have commenced experiments with intense short pulses of ion beams on the Neutralized Drift Compression Experiment (NDCX-II) at Lawrence Berkeley National Laboratory, with 1-mm beam spot size within 2.5 ns full-width at half maximum. The ion kinetic energy is 1.2 MeV. To enable the short pulse duration and mm-scale focal spot radius, the beam is neutralized in a 1.5-meter-long drift compression section following the last accelerator cell. A short-focal-length solenoid focuses the beam in the presence of the volumetric plasma that is near the target. In the accelerator, the line-charge density increases due to the velocity ramp imparted on the beam bunch. The scientific topics to be explored are warm dense matter, the dynamics of radiation damage in materials, and intense beam and beam-plasma physics including select topics of relevance to the development of heavy-ion drivers for inertial fusion energy. Below the transition to melting, the short beam pulses offer an opportunity to study the multi-scale dynamics of radiation-induced damage in materials with pump-probe experiments, and to stabilize novel metastable phases of materials when short-pulse heating is followed by rapid quenching. First experiments used a lithium ion source; a new plasma-based helium ion source shows much greater charge delivered to the target.Comment: 4 pages, 2 figures, 1 table. Submitted to the proceedings for the Ninth International Conference on Inertial Fusion Sciences and Applications, IFSA 201

    Charge Symmetry Violation Corrections to Determination of the Weinberg Angle in Neutrino Reactions

    Get PDF
    We show that the correction to the Paschos-Wolfenstein relation associated with charge symmetry violation in the valence quark distributions is essentially model independent. It is proportional to a ratio of quark momenta that is independent of Q^2. This result provides a natural explanation of the surprisingly good agreement found between our earlier estimates within several different models. When applied to the recent NuTeV measurement, this effect significantly reduces the discrepancy with other determinations of the Weinberg angle.Comment: 7 pages, no figures; expanded discussion of N.ne.Z correction
    corecore