473 research outputs found

    Real-Time Prediction of Power Electronic Device Temperatures Using PRBS-Generated Frequency-Domain Thermal Cross Coupling Characteristics

    Get PDF
    This paper presents a technique to predict the temperature response of a multielement thermal system based on the thermal cross coupling between elements. The complex frequency-domain cross coupling of devices is first characterized using a pseudorandom binary sequence technique. The characteristics are then used to predict device temperatures for a known input power waveform using a discrete Fourier transform-based technique. The resulting prediction shows good agreement with an example practical system used for evaluation. To reduce the computational complexity of the initial method, a digital infinite impedance response (IIR) filter is fitted to each cross coupling characteristic. A high correlation fit is demonstrated that produces a near-identical temperature response compared to the initial procedure while requiring fewer mathematical operations. Experimental validation on the practical system shows good agreement between IIR filter predictions and practical results. It is further demonstrated that this agreement can be substantially improved by taking feedback from an internal reference temperature. Additionally, the proposed IIR filter technique allows the efficient calculation of future device temperatures based on simulated input, facilitating future temperature predictions

    Real-time temperature estimation in a multiple device power electronics system subject to dynamic cooling

    Get PDF
    This paper presents a technique to estimate the temperature of each power electronic device in a thermally coupled, multiple device system subject to dynamic cooling. Using a demonstrator system, the thermal transfer impedance between pairs of devices is determined in the frequency domain for a quantised range of active cooling levels using a technique based on pseudorandom binary sequences. The technique is illustrated by application to the case temperatures of power devices. For each cooling level and pair of devices, a sixth order digital IIR filter is produced which can be used to directly estimate temperature from device input power. When the cooling level changes, the filters in use are substituted and the internal states of the old filters are converted for use in the new filter. Two methods for filter state conversion are developed—a computationally efficient method which is suited to infrequent changes in power dissipation and cooling, and a more accurate method which requires increased memory and processing capacity. Results show that the temperature can be estimated with low error using a system which is suitable for integration on an embedded processor

    Critical Design Criterion for Achieving Zero Voltage Switching in Inductorless Half-Bridge-Driven Piezoelectric-Transformer-Based Power Supplies

    Get PDF
    A methodology for predicting the ability of inductor-less driven piezoelectric transformer (PT) based power supplies to achieve zero voltage switching (ZVS) is presented. A describing function approach is used to derive an equivalent circuit model of the PT operating in the vicinity of ZVS and the subsequent application of the model provides a quantitative measure of a PT's ability to achieve ZVS when driven by an inductor-less half-bridge inverter. Through detailed analysis of the analytical model, the limitations of the inductor-less half-bridge driven PT are exposed from which guidelines for designing both the PT and inverter are derived

    Observation of electrolytic capacitor ageing behaviour for the purpose of prognostics

    Get PDF
    Electrolytic capacitors are an important component within power electronics systems which are known to exhibit poorer reliability compared to other components within the system. In this paper, the changes in electrical parameters (capacitance and equivalent series resistance) which occur as electrolytic capacitors age are characterised at regular intervals over the life of the capacitors. Ageing is observed under three different bias conditions: no bias; constant voltage bias and square wave excitation and at two different ambient temperatures. The data captured within this work presents the changes in capacitor properties from new, reaching to a point which the capacitor parameters have changed sufficiently, such that the capacitor can be considered to have failed. Such data will prove valuable in the development of a system designed to determine the state of health of a capacitor, or could be used to predict its remaining useful lifetime

    Minimum charge-recovery time control with parallel connected buck converters

    Get PDF
    Optimal-time control to minimise a converter’s recovery time has thus far been reported only for single power module converters. This paper adapts the optimal-time control problem and applies it to converters based on multiple power modules. Additionally, a novel minimum charge-recovery time control is also proposed for the multiple power module converter which produces a recovery time shorter than that in the optimal-time control. A 20 W converter is used to demonstrate the improved characteristics under primary regions of operation. Results show that the transient recovery time during a load step change is improved by 75% compared to traditional optimal time control

    Modified conjugated gradient method for diagonalising large matrices

    Full text link
    We present an iterative method to diagonalise large matrices. The basic idea is the same as the conjugated gradient (CG) method, i.e, minimizing the Rayleigh quotient via its gradient and avoiding reintroduce errors to the directions of previous gradients. Each iteration step is to find lowest eigenvector of the matrix in a subspace spanned by the current trial vector and the corresponding gradient of the Rayleigh quotient, as well as some previous trial vectors. The gradient, together with the previous trail vectors, play a similar role of the conjugated gradient of the original CG algorithm. Our numeric tests indicate that this method converges significantly faster than the original CG method. And the computational cost of one iteration step is about the same as the original CG method. It is suitably for first principle calculations.Comment: 6 Pages, 2EPS figures. (To appear in Phys. Rev. E

    Meaurement of Electrical Parameters of Electrolytic Capacitors Using Real-World Drive Waveforms for State-of-Health Determination

    Get PDF
    Electrolytic capacitors form an important part of most drive systems. Consequently a method of determining the state-of-health of these capacitors without having to remove them from the system would be of value. In this paper a method of achieving this is proposed. This is achieved by measuring the current through and the voltage across the dc link capacitor within a brushless dc motor drive; from these values the impedance spectrum is calculated. From these measurements the capacitance and resistance values of the capacitor are calculated. This technique forms a useful prognostic tool for power electronic drive systems where changes to these electrical parameters are a good indicator of the state-of-health of the capacitor. Real-world results taken from an experimental system demonstrate that increases in capacitor resistance can be clearly observed

    Evaluation of silicon MOSFETs and GaN HEMTs in soft‐switched and hard‐switched DC‐DC boost converters for domestic PV applications

    Get PDF
    Hard‐switched high‐gain DC‐DC converters such as the boost converter play an important role in renewable energy systems. Research to increase their efficiency is important and can be achieved using soft‐switching techniques; however, that approach requires an auxiliary circuit. The auxiliary circuit decreases power density and reliability while increasing the cost. Moreover, soft‐switching topologies usually cannot improve the efficiency for all power and voltage ranges. Wide bandgap (WBG) devices, such as gallium nitride (GaN), result in lower switching losses than silicon (Si), can be used while retaining the simple structure of a hard‐switched topology. However, the high cost of these devices is problematic for their frequently cost‐sensitive applications. To quantify the cost and efficiency, this study compares soft‐switching techniques and WBG‐based switches in DC‐DC boost converters for a photovoltaic (PV) energy application. The performance of four prototypes including the soft‐switched and hard‐switched DC‐DC converters with both state‐of‐the‐art Si and GaN switches are evaluated in terms of cost, power density, efficiency, and reliability using theoretical analysis, simulation and experimental results. It is shown that the GaN‐based hard‐switched converter provides higher efficiency and power density; it is more expensive than its Si‐based counterpart, yet is cheaper than soft‐switched converters

    Analysis, design and modelling of two fully- integrated transformers with segmental magnetic shunt for LLC resonant converters

    Get PDF
    To achieve a precise, high leakage inductance for an integrated magnetic transformer, a magnetic shunt (based on low- permeability materials) is usually added to the planar transformer. However, high-performance low-permeability power materials are not readily available in the market. Therefore, two new topologies for shunt-inserted planar transformer are proposed in this paper. In the proposed topologies, the magnetic shunts are based on high-permeability materials like ferrite, which is widely available, and use multiple small gaps to approximate a low-permeability material as an alternative to a low-permeability magnetic shunt. The analysis, design and modelling of the proposed planar transformers are presented in detail. It is shown that the magnetizing inductance can be controlled by vertical air gaps and the leakage inductance value can be controlled by the thickness of the shunt. Hence, the desirable leakage inductance and magnetizing inductance values for the integrated transformer can be obtained for use in LLC resonant converters. The theoretical analyses are verified by finite element analysis (FEA) and the AC resistance for the proposed topologies is discussed

    Equivalent circuit parameter extraction of low-capacitance high-damping PTs

    Get PDF
    Existing equivalent circuit extraction techniques are inaccurate for piezoelectric transformers (PTs) with low-input capacitance or high damping. A new method is presented, offering improved accuracy in both damping resistance and resonant frequency extraction compared with state-of-the-art methods. Effectiveness is evaluated on two sample PTs, with the proposed method achieving up to 84% decrease in error compared with previous methods
    • 

    corecore