'Institute of Electrical and Electronics Engineers (IEEE)'
Doi
Abstract
To achieve a precise, high leakage inductance for an integrated magnetic transformer, a magnetic shunt (based on low- permeability materials) is usually added to the planar transformer. However, high-performance low-permeability power materials are not readily available in the market. Therefore, two new topologies for shunt-inserted planar transformer are proposed in this paper. In the proposed topologies, the magnetic shunts are based on high-permeability materials like ferrite, which is widely available, and use multiple small gaps to approximate a low-permeability material as an alternative to a low-permeability magnetic shunt. The analysis, design and modelling of the proposed planar transformers are presented in detail. It is shown that the magnetizing inductance can be controlled by vertical air gaps and the leakage inductance value can be controlled by the thickness of the shunt. Hence, the desirable leakage inductance and magnetizing inductance values for the integrated transformer can be obtained for use in LLC resonant converters. The theoretical analyses are verified by finite element analysis (FEA) and the AC resistance for the proposed topologies is discussed