2,682 research outputs found

    Optimal design of a carbon dioxide separation process with market uncertainty and waste reduction

    Get PDF
    The aim of this work is to optimize the conceptual design of an amine-based carbon dioxide (CO2) separation process for Enhanced Oil Recovery (EOR). A systematic approach is applied to predict the economic profitability of the system while reducing the environmental impacts. Firstly, we model the process with UniSim and determine the governing degrees of freedom (DoF) through a sensitivity analysis. Then, we proceed with the formulation of the economic problem, where the employment of econometric models allows us to predict the highest dynamic economic potential (DEP). In the second part, we apply the Waste Reduction (WAR) algorithm to quantify the environmental risks of the studied process. This method is based on the minimization of the potential environmental indicator (PEI) by using the generalization of the Waste Reduction algorithm. Results show that the CO2 separation plant is promising in terms of economic revenues. However, the PEI value indicates that the higher the profitability, the larger the environmental risk. The optimal value of the DEP corresponds to 0.0274 kmol/h and 60 ◦C, with a plant capacity according to the mole flow rate of the produced acid gas. In addition, the highest environmental risk is observed at the upper bounds of the DoF.Fil: Gutierrez, Juan Pablo. Universidad Nacional de Salta. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Erdmann, Eleonora. Universidad Nacional de Salta. Facultad de Ingeniería; Argentina. Consejo Nacional de Investigaciones Científicas y Técnicas. Centro Científico Tecnológico Conicet - Salta. Instituto de Investigaciones para la Industria Química. Universidad Nacional de Salta. Facultad de Ingeniería. Instituto de Investigaciones para la Industria Química; ArgentinaFil: Manca, Davide. Politecnico di Milano; Itali

    Numerical simulation of thermal energy storage with phase change material and aluminum foam

    Get PDF
    A Latent Heat thermal energy storage system (LHTESS) is employed as a thermal buffer, since it avoids the intermittent supply of thermal energy due to the behaviour of the thermal source, in particular the renewable thermal source like the solar radiation. Therefore a LHTESS allows supplying the thermal energy in continuous way. The principal material of a LHTESS is the phase change material (PCM) given that it storages a high quantity of thermal energy during its phase change process thanks to the high value of latent heat. Moreover the thermal energy is stored at quasi-constant temperature because during the phase change process the heat is engaged to change phase and not to raise the temperature. Please download the full abstract below

    Modelling of methanol synthesis in a network of forced unsteady-state ring reactors by artificial neural networks for control purposes

    Get PDF
    A numerical model based on artificial neural networks (ANN) was developed to simulate the dynamic behaviour of a three reactors network (or ring reactor), with periodic change of the feed position, when low-pressure methanol synthesis is carried out. A multilayer, feedforward, fully connected ANN was designed and the history stack adaptation algorithm was implemented and tested with quite good results both in terms of model identification and learning rates. The influence of the ANN parameters was addressed, leading to simple guidelines for the selection of their values. A detailed model was used to generate the patterns adopted for the learning and testing phases. The simplified model was finalised to develop a model predictive control scheme in order to maximise methanol yield and to fulfil process constraints

    Physiologically-based pharmacokinetic simulations in pharmacotherapy: selection of the optimal administration route for exogenous melatonin

    Get PDF
    The benefits of melatonin on human body are drawing increasing attention from several researchers in different fields. While its role as cure for sleep disturbances (e.g., jet lag, insomnia) is well documented and established, new functions in physiological and pathophysiological processes are emerging. To investigate these effects, there is need for the characterization of melatonin transport processes in the body and resulting pharmacokinetics. Although recent works propose physiologically-based pharmacokinetic modelling of melatonin, no work has yet highlighted the potential of PBPK simulations to shed light on melatonin pharmacokinetic aspects and discrimination among administration routes. This paper presents, validates, and discusses a versatile PBPK model featuring different ways of administration and compares the resulting pharmacokinetic profiles of intravenous, oral, and transdermal administration, with the goal of understanding which is the optimal route to achieve either physiological and/or supraphysiological melatonin levels
    corecore