590 research outputs found
Albendazole negatively regulates keratinocyte proliferation
Abstract
Background: Increased keratinocyte proliferation occurs in the skin of psoriatic patients and is supposed to play a role in the pathogenesis of this disorder. Compounds interfering with keratinocyte proliferation could be useful in the management of psoriatic patients.
Aim: To investigate whether albendazole, an anti-helmintic drug that regulates epithelial cell function in various systems, inhibits keratinocyte proliferation in models of psoriasis.
Methods: Aldara-treated mice received daily topical application of albendazole. Keratinocyte proliferation and keratin (K) 6 and K16 expression were evaluated by immunohistochemistry and Western blotting and inflammatory cells/mediators were analysed by immunohistochemistry and real-time PCR. In human keratinocytes (HEKa and HaCaT) treated with albendazole, cell cycle and proliferation, keratins and cell cycle-associated factors were evaluated by flow cytometry, colorimetric assay and Western blotting respectively.
Results: Aldara-treated mice given albendazole exhibited reduced epidermal thickness, decreased number of proliferating keratinocytes and K6/K16 expression. Reduction of CD3- and Ly6G-positive cells in the skin of albendazole-treated mice associated with inhibition of IL-6, TNF-α, IL-1β, IL-17A, IL-36, CCL17, CXCL1, CXCL2 and CXCL5 expression. Treatment of keratinocytes with albendazole reduced K6/K16 expression and reversibly inhibited cell growth by promoting accumulation of cells in S-phase. This phenomenon was accompanied by down-regulation of CDC25A, a phosphatase regulating progression of cell cycle through S-phase, and PKR-dependent hyper-phosphorylation of eIF2α, an inhibitor of CDC25 translation. In Aldara-treated mice, albendazole activated PKR, enhanced eIF2α phosphorylation and reduced CDC25A expression.
Conclusions: Data show that albendazole inhibits keratinocyte proliferation and exerts therapeutic effect in a murine model of psoriasis
Insulin-like Growth Factor II mRNA-Binding Protein 1 Regulates Pancreatic Cancer Cell Growth through the Surveillance of CDC25A mRNA
: A number of data indicate that the sources of different kinds of PDAC may be discovered at the transcription/transduction stage. RNA metabolism is manipulated at various steps by different RNA-binding proteins (RBPs), and the deregulation or irregular activity of RBPs is known to contribute to tumor promotion and progression. The insulin-like growth factor 2 mRNA-binding protein family (IMPs), and IMP1 in particular, has been linked with a poor prognosis in PDAC patients; however, little is known about its contribution in PDAC carcinogenesis. In this study, we investigated the function of IMP1 in PDAC. To evaluate IMP1 expression and correlation with PDAC prognosis, we utilized several public databases. Using a specific siRNA IMP1, we analyzed cell death and cell cycle progression in PDAC cell lines and 3D spheroids. the role of IMP1 was also evaluated in vivo in a panc-1-derived tumor xenograft murine model. Public data suggest that PDAC patients with higher expression of IMP1 showed poor overall and progression-free survival. IMP1 silencing leads to reduced cell growth in PDAC cells and three-dimensional spheroids. Abrogation of IMP1 in PDAC cells showed lower levels of CDC25A, increased phosphorylation of the cyclin-dependent kinase (CDK)2, and accumulation of PDAC cells in the G1 phase. immunoprecipitation experiments revealed that IMP1 binds CDC25A mRNA, thus controlling cell-cycle progression. Ultimately, we proved that suppression of IMP1 blocked in vivo growth of Panc-1 transferred into immunodeficient mice. Our results indicate that IMP1 drives the PDCA cell cycle and represents a novel strategy for overcoming PDCA cell proliferation
Smad7 Sustains Stat3 Expression and Signaling in Colon Cancer Cells
: Colorectal cancer (CRC) cells contain elevated levels of active signal transducer and the activator of transcription (Stat)-3, which exerts proliferative and anti-apoptotic effects. Various molecules produced in the CRC tissue can activate Stat3, but the mechanisms that amplify such an activation are yet to be determined. In this paper, we assessed whether Smad7, an inhibitor of Transforiming Growth Factor (TGF)-β1 activity, sustains Stat3 expression/activation in CRC cells. Both Smad7 and phosphorylated (p)/activated-Stat3 were more expressed in the tumoral areas of CRC patients, compared to the normal adjacent colonic mucosa of the same patients, and were co-localized in primary CRC cells and CRC cell lines. The knockdown of Smad7 with a Smad7 antisense oligonucleotide (AS) reduced p-Stat3 in both unstimulated and interleukin (IL)-6- and IL-22-stimulated DLD-1 and HCT116 cells. Consistently, reduced levels of BCL-xL and survivin, two downstream signaling targets of Stat3 activation, were seen in Smad7 AS-treated cells. An analysis of the mechanisms underlying Smad7 AS-induced Stat3 inactivation revealed that Smad7 AS reduced Stat3 RNA and protein expression. A chromatin immunoprecipitation assay showed the direct regulatory effect of Smad7 on the Stat3 promoter. RNA-sequencing data from the Tumor, Normal and Metastatic (TNM) plot database showed a positive correlation between Smad7 and Stat3 in 1450 CRC samples. To our knowledge, this is the first evidence supporting the theory that Smad7 positively regulates Stat3 function in CRC
Antisense Oligonucleotide: Basic Concepts and Therapeutic Application in Inflammatory Bowel Disease
Several molecular technologies aimed at regulating gene expression that have been recently developed as a strategy to combat inflammatory and neoplastic diseases. Among these, antisense technology is a specific, rapid, and potentially high-throughput approach for inhibiting gene expression through recognition of cellular RNAs. Advances in the understanding of the molecular mechanisms that drive tissue damage in different inflammatory diseases, including Crohn’s disease (CD) and ulcerative colitis (UC), the two major inflammatory bowel diseases (IBDs) in humans, have facilitated the identification of novel druggable targets and offered interesting therapeutic perspectives for the treatment of patients. This short review provides a comprehensive understanding of the basic concepts underlying the mechanism of action of the oligonucleotide therapeutics, and summarizes the available pre-clinical and clinical data for oligonucleotide-based therapy in IBD
Human Cystathionine-β-Synthase Phosphorylation on Serine227 Modulates Hydrogen Sulfide Production in Human Urothelium
Urothelium, the epithelial lining the inner surface of human bladder, plays a key role in bladder physiology and pathology. It responds to chemical, mechanical and thermal stimuli by releasing several factors and mediators. Recently it has been shown that hydrogen sulfide contributes to human bladder homeostasis. Hydrogen sulfide is mainly produced in human bladder by the action of cystathionine-β-synthase. Here, we demonstrate that human cystathionine-β-synthase activity is regulated in a cGMP/PKG-dependent manner through phosphorylation at serine 227. Incubation of human urothelium or T24 cell line with 8-Bromo-cyclic-guanosine monophosphate (8-Br-cGMP) but not dibutyryl-cyclic-adenosine monophosphate (d-cAMP) causes an increase in hydrogen sulfide production. This result is congruous with the finding that PKG is robustly expressed but PKA only weakly present in human urothelium as well as in T24 cells. The cGMP/PKG-dependent phosphorylation elicited by 8-Br-cGMP is selectively reverted by KT5823, a specific PKG inhibitor. Moreover, the silencing of cystathionine-β-synthase in T24 cells leads to a marked decrease in hydrogen sulfide production either in basal condition or following 8-Br-cGMP challenge. In order to identify the phosphorylation site, recombinant mutant proteins of cystathionine-β-synthase in which Ser32, Ser227 or Ser525 was mutated in Ala were generated. The Ser227Ala mutant cystathionine-β-synthase shows a notable reduction in basal biosynthesis of hydrogen sulfide becoming unresponsive to the 8-Br-cGMP challenge. A specific antibody that recognizes the phosphorylated form of cystathionine-β-synthase has been produced and validated by using T24 cells and human urothelium. In conclusion, human cystathionine-β-synthase can be phosphorylated in a PKG-dependent manner at Ser227 leading to an increased catalytic activity
The Fragile X Mental Retardation Protein Regulates RIPK1 and Colorectal Cancer Resistance to Necroptosis
Background & aims: The fragile X mental retardation protein (FMRP) affects multiple steps of the mRNA metabolism during brain development and in different neoplastic processes. However, the contribution of FMRP in colon carcinogenesis has not been investigated.
Methods: FMR1 mRNA transcript and FMRP protein expression were analyzed in human colon samples derived from patients with sporadic colorectal cancer (CRC) and healthy subjects. We used a well-established mouse model of sporadic CRC induced by azoxymethane to determine the possible role of FMRP in CRC. To address whether FMRP controls cancer cell survival, we analyzed cell death pathway in CRC human epithelial cell lines and in patient-derived colon cancer organoids in presence or absence of a specific FMR1 antisense oligonucleotide or siRNA.
Results: We document a significant increase of FMRP in human CRC relative to non-tumor tissues. Next, using an inducible mouse model of CRC, we observed a reduction of colonic tumor incidence and size in the Fmr1 knockout mice. The abrogation of FMRP induced spontaneous cell death in human CRC cell lines activating the necroptotic pathway. Indeed, specific immunoprecipitation experiments on human cell lines and CRC samples indicated that FMRP binds receptor-interacting protein kinase 1 (RIPK1) mRNA, suggesting that FMRP acts as a regulator of necroptosis pathway through the surveillance of RIPK1 mRNA metabolism. Treatment of human CRC cell lines and patient-derived colon cancer organoids with the FMR1 antisense resulted in up-regulation of RIPK1.
Conclusions: Altogether, these data support a role for FMRP in controlling RIPK1 expression and necroptotic activation in CRC
Rafoxanide sensitizes colorectal cancer cells to TRAIL-mediated apoptosis
Colorectal cancer (CRC) remains a leading causes of cancer-related death in the world, mainly due to the lack of effective treatment of advanced disease. TNF-related apoptosis-inducing ligand (TRAIL)-driven cell death, a crucial event in the control of tumor growth, selectively targets malignant rather than non-transformed cells. However, the fact that cancer cells, including CRC cells, are either intrinsically resistant or acquire resistance to TRAIL, represents a major hurdle to the use of TRAIL-based strategies in the clinic. Agents able to overcome CRC cell resistance to TRAIL have thus great therapeutic potential and many researchers are making efforts to identify TRAIL sensitizers. The anthelmintic drug rafoxanide has recently emerged as a potent anti-tumor molecule for different cancer types and we recently reported that rafoxanide restrained the proliferation of CRC cells, but not of normal colonic epithelial cells, both in vitro and in a preclinical model mimicking sporadic CRC. As these findings were linked with the induction of endoplasmic reticulum stress, a phenomenon involved in the regulation of various components of the TRAIL-driven apoptotic pathway, we sought to determine whether rafoxanide could restore the sensitivity of CRC cells to TRAIL. Our data show that rafoxanide acts as a selective TRAIL sensitizer in vitro and in a syngeneic experimental model of CRC, by decreasing the levels of c-FLIP and survivin, two key molecules conferring TRAIL resistance. Collectively, our data suggest that rafoxanide could potentially be deployed as an anti-cancer drug in the combinatorial approaches aimed at overcoming CRC cell resistance to TRAIL-based therapies
Protective Effects of Aryl Hydrocarbon Receptor Signaling in Celiac Disease Mucosa and in Poly I:C-Induced Small Intestinal Atrophy Mouse Model
Aryl hydrocarbon receptor (AhR), a transcription factor activated by a large number of natural and synthetic agents, modulates the activity of immune cells in the gut and represents an important link between the environment and immune-mediated pathologies. In this study, we investigated the role of AhR in celiac disease (CD), a gluten-driven enteropathy. AhR expression was evaluated in intestinal biopsies taken from patients with CD and controls by real-time polymerase chain reaction (PCR), immunohistochemistry and flow cytometry. AhR was also analyzed in ex vivo organ cultures of duodenal biopsies taken from inactive CD patients incubated in presence or absence of peptic-tryptic digest of gliadin. IFN-γ, TNF-α, granzyme B, and perforin expression was evaluated in anti-CD3/CD28-activated intestinal lamina propria mononuclear cells (LPMC) and intestinal intra-epithelial cells (IEL) of active CD patients cultured in the presence or absence of the AhR agonist 6-formylindolo(3, 2-b)carbazole (Ficz). Finally, the protective role of AhR was evaluated in a mouse model of poly I:C-driven small intestine damage. AhR RNA transcripts were reduced in active CD samples as compared to inactive CD and normal controls. Flow cytometry confirmed such results and showed a reduction of AhR in both IEL and LPMC of active CD patients. The addition of a peptic-tryptic digest of gliadin to ex vivo organ cultures of duodenal biopsies taken from inactive CD patients reduced AhR expression. Treatment of CD IEL and LPMC with Ficz reduced the levels of inflammatory cytokines, granzyme B and perforin. Mice injected with Ficz were protected against poly I:C-induced intestinal lesions. Our findings suggest that defective AhR-driven signals could contribute to amplify pathogenic responses in the gut of CD patients
NPD-0414-2 and NPD-0414-24, Two Chemical Entities Designed as Aryl Hydrocarbon Receptor (AhR) Ligands, Inhibit Gut Inflammatory Signals
Defects in counterregulatory mechanisms contribute to amplify the detrimental inflammatory response leading to the pathologic process occurring in the gut of patients with Crohn’s disease (CD) and ulcerative colitis (UC), the major inflammatory bowel diseases (IBDs), in human beings. One such mechanism involves aryl hydrocarbon receptor (AhR), a transcription factor activated by natural and synthetic ligands, which induces the production of interleukin (IL)-22 and down-regulates inflammatory signals. In IBD, AhR expression is down-regulated and its activation by natural ligands promotes clinical and endoscopic benefit. Since the use of AhR natural ligands can associate with serious adverse events, we developed new chemical ligands of AhR and assessed their regulatory effects. Among these derivatives, we selected the compounds NPD-0414-2 and NPD-0414-24, as they displayed the more pronounced capacity to induce IL-22. Peripheral blood mononuclear cells and lamina propria mononuclear cells (LPMC) were isolated from CD and UC patients. Cells were treated in vitro with Ficz, AhR ligands, and AhR antagonist and then cytokines’ expression was evaluated by real-time PCR and flow cytometry. After the induction of TNBS colitis, Ficz and AhR ligands were injected intra-peritoneally to wild type and AhR knock-out mice. After 4 days, mice were sacrificed and colonic tissues were collected for histologic examination and real-time PCR analysis. Treatment of IBD LPMC with NPD-0414-2 and NPD-0414-24 reduced IFN-γ and increased IL-22 transcripts, and these effects were abrogated by CH223191, a specific inhibitor of AhR interaction with its ligands. Mice given NPD-0414-2 and NPD-0414-24 developed a significantly less severe form of TNBS colitis and exhibited reduced expression of IFN-γ and increased expression of IL-22. The therapeutic effect of NPD-0414-2 and NPD-0414-24 on the ongoing colitis was abrogated in AhR-deficient mice. Collectively, these data show that NPD-0414-2 and NPD-0414-24 exert Ahr-dependent regulatory effects in the gut
- …