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Clinical Perspectives 
 
• Increased keratinocyte proliferation is one of the major pathological features of psoriasis.  
• Topical application of Albendazole, a well-characterized anti-helmintic drug, inhibits keratinocyte 

proliferation and reduces the severity and extent of psoriasis-like skin lesions in mice. 
• Albendazole could enter into the therapeutic armamentarium of psoriasis.  
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Summary 
Background. Increased keratinocyte proliferation occurs in the skin of psoriatic patients and is 

supposed to play a role in the pathogenesis of this disorder. Compounds interfering with 

keratinocyte proliferation could be useful in the management of psoriatic patients. 

Aim. To investigate whether albendazole, an anti-helmintic drug that regulates epithelial cell 

function in various systems, inhibits keratinocyte proliferation in models of psoriasis.   

Methods. Aldara-treated mice received daily topical application of albendazole. Keratinocyte 

proliferation and keratin (K) 6 and K16 expression were evaluated by immunohistochemistry and 

Western blotting and inflammatory cells/mediators were analyzed by immunohistochemistry and 

real-time PCR. In human keratinocytes (HEKa and HaCaT) treated with albendazole, cell cycle and 

proliferation, keratins and cell cycle-associated factors were evaluated by flow cytometry, 

colorimetric assay and Western blotting respectively.  

Results. Aldara-treated mice given albendazole exhibited reduced epidermal thickness, decreased 

number of proliferating keratinocytes and K6/K16 expression. Reduction of CD3- and Ly6G-

positive cells in the skin of albendazole-treated mice associated with inhibition of IL-6, TNF-α, IL-

1β, IL-17A, IL36, CCL17, CXCL1, CXCL2 and CXCL5 expression. Treatment of keratinocytes 

with albendazole reduced K6/K16 expression and reversibly inhibited cell growth by promoting 

accumulation of cells in S-phase. This phenomenon was accompanied by down-regulation of 

CDC25A, a phosphatase regulating progression of cell cycle through S phase, and PKR-dependent 

hyper-phosphorylation of eIF2α, an inhibitor of CDC25 translation. In Aldara-treated mice, 

albendazole activated PKR, enhanced eIF2α phosphorylation and reduced CDC25A expression.  

Conclusions. Data show that albendazole inhibits keratinocyte proliferation and exerts therapeutic 

effect in a murine model of psoriasis.    

 

Keywords 
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INTRODUCTION 

Psoriasis is one of the most common chronic inflammatory disorders, affecting 

approximately 2-3% of the population worldwide (1). Well-demarcated, erythematous, scaly 

plaques, which can involve any part of the skin, but more commonly the extensor surfaces and the 

scalp, are typical lesions of the disease. Histologically, psoriasis is characterized by keratinocyte 

hyper-proliferation with parakeratosis and elongation or rete ridges, increased angiogenesis, and 

dermal infiltration with many inflammatory cells, such as macrophages, dendritic cells, T cells, and 

neutrophils(2-4). 

The aetiology of psoriasis remains unknown even though accumulating evidence suggests 

that psoriasis develops in genetically predisposed individuals as a result of the action of various 

environmental factors, which trigger innate and adaptive immune responses(5, 6). As a 

consequence, many effector cytokines produced in the psoriatic skin [e.g. tumour necrosis factor 

(TNF), interleukin (IL)-6, IL-17, IL-21, IL-22, and IL-23] stimulate keratinocyte 

activation/proliferation(7-11). This sequence of events is accompanied by secretion of 

chemoattractants, which promote recruitment of other inflammatory cells, such as neutrophils, into 

the affected skin thereby leading to the amplification of the detrimental inflammatory response(3). 

In line with such a hypothesis is the observation that compounds targeting the above cytokines are 

useful for inducing and maintaining remission in psoriatic patients(12-16). Unfortunately however, 

not all the patients respond to these drugs and in some patients treatment must be discontinued due 

to the development of adverse events or other immune-mediated diseases(17-19). Thus, the 

development of novel compounds targeting the key pathogenic events in psoriasis is worth 

pursuing.  

Studies in murine models of psoriasis have also shown that primary defects of keratinocytes 

could be sufficient to promote epidermal hyper-proliferation and psoriasis-associated immune-
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inflammatory reactions, raising the possibility that drugs interfering with keratinocyte function 

could be useful in the management of psoriatic patients(20-22).   

Since the development of new drugs is a very lengthy and costly process, drug repositioning, 

defined as identifying novel indications for existing drugs, has recently become a good strategy for 

overcoming the limitations of traditional methods. 

Albendazole is a well-characterized benzimidazole derivative, initially developed as an anti-

helmintic drug. Albendazole-mediated biologic effects rely on inhibition of tubulin polymerization 

and blockage of glucose uptake(23-25). Recent experimental studies have shown that albendazole 

has also anti-tumoral properties in many epithelial cancers (e.g. hepatocellular carcinoma, 

cutaneous squamous cell carcinoma, and colorectal carcinoma) mainly depending on its ability to 

interfere with cancer cell growth(26-28). Based upon these observations, we hypothesized that 

albendazole can also regulate keratinocyte proliferation/activation and exert protective effects in 

psoriasis. The aim of this study was to investigate whether albendazole inhibits psoriatic lesions in 

an in vivo model of disease and to dissect the mechanisms by which the drug interferes with 

keratinocyte proliferation. 
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MATERIALS AND METHODS 

Mice studies 

C57bl/6 mice (male, 8-10 weeks of age) were purchased from Charles River and hosted in 

the conventional animal facility at the University of Rome “Tor Vergata”. Animal Ethics 

Committee, according to Italian legislation on animal procedures, approved all the animal 

experiments (N° 597/2016-PR). All reagents were from Sigma-Aldrich (Milan, Italy) unless 

specified. To induce a psoriasis-like skin inflammation, shaved mice were treated daily with 62.5 

mg of commercially available Aldara cream (Meda, Solda, Sweden) on the back skin for 4 

consecutive days. Vaseline cream was used as internal control (vehicle). Methyl 5-propylthio-2-

benzimidazolecarbamate (albendazole) (30μg/mouse), resuspended in 100 μl of propylene glycol, 

was daily applied on the shaved back of Aldara-treated mice in the same skin area, starting 12 hours 

after the Aldara administration. Control mice were daily treated with a similar daily amount of 

propylene glycol 12 hours after the Aldara treatment. All animals were assessed for the severity of 

the psoriasis-like skin condition at day 4, using three elements of the Psoriasis Area Severity Index 

(PASI), assigning a score of 0 – 4 (0: none; 1: mild; 2: moderate; 3: severe; 4: very severe) for each 

of the parameters erythema, scaling and induration. This analysis was performed in at least 4 fields 

per section of all the skin samples.  

 

Histopathological analysis and immunohistochemistry 

Cryosections of mouse skin samples were stained with hematoxylin and eosin (H&E), and 

epidermal thickness was evaluated by measuring the average interfollicular distance from the basal 

lamina to the bottom of the stratum corneum(8, 29). Mouse sections were also stained with rat anti-

ki67 antibody (Dako, Milan, Italy) followed by a secondary antibody anti-rat conjugated to 

horseradish peroxidase (Dako). Likewise, sections were stained with rabbit anti-CD3 (SP7) 

(Abcam, Cambridge, UK), rat anti-Ly6G (BD Pharmingen, San Jose, CA, USA), rabbit anti-

Cleaved Caspase 3 (Cell Signaling Technology, Danvers, MA, USA) and positive cells were 
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visualized using MACH4 Universal HRP- Polymer kit with DAB (Biocare Medical, Pacheco, CA). 

Isotype control sections were prepared under identical immunohistochemical conditions, replacing 

the primary antibody with a purified control isotype (IgG). Positive cells were analyzed by LEICA 

DMI4000 B microscope using LEICA application suite software (V4.6.2). The percentage of skin 

area covered by positive cells was evaluated using Image J (NIH) software. 

 

Cell cultures  

The human immortalized keratinocyte cell line, HaCaT, was obtained from the Creative 

Bioarray (Shirley, NY, USA). Cells were cultured in Dulbecco’s modified Eagle’s medium 

(DMEM) supplemented with 0.05% bovine serum albumin (BSA), glutamine (4 mM) and 0.05 

mg/ml gentamycin. Human Epidermal Keratinocyte adult (HEKa) was purchase from the American 

Type Culture Collection (ATCC, Manassas, VA) and cultured in Dermal Cell Basal Medium 

supplemented with 0.4% of Bovine Pituitary Extract (BPE), TGF-α(0.5ng/ml), L-glutamine (6 

mM), Hydrocortisone Hemisuccinate (100ng/ml), Insulin (5mg/ml), Epinephrine (1 mM) and Apo-

Transferrin (5mg/ml) (all reagents from ATCC). To inhibit p-double-stranded RNA-activated 

protein kinase (PKR), HaCaT cells were transfected with either scrambled-selective short 

interfering RNA (siRNA) or PKR-siRNA (both used at 100 nM) for 24 h and then incubated both 

for 30’ in presence or absence of albendazole (30nM). In parallel experiments, HaCaT and HeKa 

cells were incubated with TNF-α (25ng/ml) for 4 hours in presence or absence of albendazole 

(30nM). Additionally, HaCaT were treated with PKR-siRNA and 24 hour later treated with TNF-α 

(25ng/ml) in presence or absence of albendazole for 4 hours. HaCaT were also incubated with 

Salubrinal (40μM) for 24 hours.  

 

Analysis of cell death, cell proliferation and cell cycle distribution 

To evaluate whether albendazole affects cell death, HaCaT cells were treated with or 

without increasing concentrations of the compound (30 nM-1 μM) for 24h and 48h and then 
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assessed by flow cytometry. After culture, cells were collected, washed twice in PBS, stained with 

FITC-annexin V (AV, 1:100 final dilution, Immunotools, Friesoyte, Germany) according to the 

manufacturer’s instructions and incubated with 5 μg/ml propidium iodide (PI) for 30 min at 4°C. 

Fluorescence was measured using the FL-1 and FL-3 channels of Gallios (Beckman Coulter, Milan, 

Italy) flow cytometer. Viable cells were considered as AV-/PI- cells, apoptotic cells as AV+/PI- 

cells, while secondary necrotic cells were characterized by AV+/PI+ positive staining. Cell 

proliferation was assessed by using a commercially available 5-bromodeoxyuridine (BrdU) assay 

kit (Roche Diagnostic GmbH, Mannheim, Germany). Cells were incubated with 30nM of 

albendazole and BrdU was added to the cell cultures 6 hours before the end of the 24h and 48h 

treatments. BrdU-positive cells were evaluated by ELISA. To determine whether the anti-

proliferative effect of albendazole was reversible, HaCaT cells were either left untreated or treated 

with albendazole for 24 hours, then washed with PBS and cultured with fresh medium for further 24 

hours. Cell proliferation was then assessed by 5-bromodeoxyuridine (BrdU) assay. For analysis of 

cell cycle distribution, HaCaT and HEKa were either left untreated or treated with albendazole. 

After 24 hours, cells were pulsed with 10 mol/L BrdU for 60 minutes, fixed in 70% cold ethanol, 

and stored at 20° C for at least 3 hours. Cells were then denatured in 2 mol/L HCl, and stained with 

anti-BrdU monoclonal antibody (Roche Diagnostics) followed by fluorescein isothiocyanate–

conjugated secondary anti-mouse IgG (Molecular Probes, Milan, Italy). After staining with PI, cells 

were analyzed by flow cytometry. 

 

RNA extraction and Real-time PCR  

Total RNA was isolated from skin biopsies using TRIzol reagent and from cells using 

PureLink® Purification technology (Thermo Fisher Scientific). A constant amount of RNA 

(1μg/sample) was retrotranscribed into complementary DNA (cDNA). Reverse transcription was 

performed with Oligo(dT) primers and with M-MLV-reverse transcriptase (Thermo Fisher 

Scientific). Real-time PCR was performed using TaqMan gene assays for hIL-36 (α,β,γ) (Thermo 
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Fisher Scientific) and  IQ SYBR Green Supermix (Bio-Rad Laboratories, Milan, Italy) for  the other 

genes.  

Primer sequences were as follows: mIL-6 forward 5’- AGCCAGAGTCCTTCAGAGAG -3’, 

reverse 5’- GATGGTCTTGGTCCTTAGCC -3’; mTNF-α forward 5’- 
ACCCTCACACTCAGATCATC, reverse 5’- GATGGTCTTGGTCCTTAGCC -3’; mIL-1β 

forward 5’- TCAGGCAGGCAGTATCACTC -3’, reverse 5’- CTAATGGGAACGTCACACACC -

3’; mIL-17A forward 5’- TCAGACTACCTCAACCGTTC -3’, reverse 5’- 
TTCAGGACCAGGATCTCTTG -3’; mCCL17 forward 5’- TTTCTGACTGTCCAGGGCAA -3’, 

reverse 5’- TTTGTGTTCGCCTGTAGTGC -3’; mCXCL1 forward 5’- 

GCTGGGATTCACCTCAAGAAC -3’, reverse 5’- AAGGGAGCTTCAGGGTCAAG -3’; 

mCXCL2 forward 5’- CGCTGTCAATGCCTGAAGAC-3’, reverse 5’- 
ACACTCAAGCTCTGGATGTTCTTG -3’; mCXCL5 forward 5’- 

CTGCCCCTTCCTCAGTCATAG -3’, reverse 5’- GGATCCAGACAGACCTCCTTC -3’;; hK6A 

forward 5’- TGAAGGAGTACCAGGAACTC -3’, reverse 5’-CACCACAGAGATGTTGACTG -

3’; hK16 forward 5’- AAGACTACAGCCCCTACTTC -3’, reverse 5’- 
CATTCTCGTACTTGGTCCTG -3’; hCDC25A forward 5’- GTACAAAGAGGAGGAAGAGC -

3’, reverse 5’- GATGCCAGGGAT AAAGACTG -3’; hIL-8 forward 5’- 

AGGAACCATCTCACTGTGTG -3’, reverse 5’- CCACTCTCAATCACTCTCAG -3’; hIL-6 

forward 5’- CCACTCACCTCTTCAGAACG -3’, reverse 5’- GCCTCTTTGCTGCTTTCACAC -

3’; hIL-1β forward 5’- AGAATGACCTGAGCACCTTC -3’, reverse 5’- 

GCACATAAGCCTCGTTATCC -3; hCCL5 forward 5’- TGCTGCTTTGCCTACATTGC -3’, 

reverse 5’- CCGAACCCATTTCTTCTCTG -3’. RNA expression was calculated relative to the 

housekeeping human/mouse β-actin gene  (forward 5’- 

AAGATGACCCAGATCATGTTTGAGACC -3’, reverse 5’-AGCCAGTCCAGACGCAGGAT -

3’) on the base of the ΔΔCt algorithm.  
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Western blotting 

Cell and skin samples were lysed on ice in buffer containing 10 mM HEPES [pH 7.9], 10 

mM KCl, 0.1 mM EthyleneDiamineTetraacetic Acid (EDTA), 0.2 mM Ethylene Glycol-bis (β-

aminoethyl ether)-N,N,N',N'-Tetraacetic Acid (EGTA) and 0.5% Nonidet P40 supplemented with 1 

mM dithiothreitol (DTT), 10 mg/ml aprotinin, 10 mg/ml leupeptin, 1 mM phenylmethylsulfonyl 

fluoride (PMSF), 1 mM Na3VO4, and 1 mM NaF. Lysates were clarified by centrifugation and 

separated on sodium dodecyl sulphate (SDS)-polyacrylamide gel electrophoresis. Blots were 

incubated with antibodies against K6A (1 : 1000 final dilution, Spring Bioscience, Pleasanton, CA, 

USA), K16 (1 : 1000 final dilution, Novus Biologicals, Littleton, CO, USA), cyclin-dependent 

kinase (CDK)2 (sc-6248), phosphorylated (p)-CDK2 (sc-28435), cell division cycle 25 (CDC25A) 

(sc-7389), CDC25B (sc-5619), CDC25C (sc-13138), eukaryotic initiation factor-2 α (eIF2α) (sc-

11386), p-PKR-like ER resident kinase (PERK) (sc-31577), (1 : 500 final dilution, all from Santa 

Cruz Biotechnology, Santa Cruz, CA, USA), p-eIF2α (Ser51) and Cleaved Caspase 3 (1 : 1000 final 

dilution, both fom Cell Signaling), PKR (Thr446) (1:1000 final dilution, Thermo Fisher Scientific, 

Waltham, MA, USA), PKR (Affinity BioReagents, Dublin, OH, USA), p-general control non-

derepressible 2 kinase (GCN2) (1:500 final dilution - Abcam) followed by a secondary antibody 

conjugated to horseradish peroxidase (Dako, Milan, Italy). After analysis, each blot was stripped 

and incubated with a mouse–anti-human monoclonal β-actin antibody (1 : 5000 final dilution, 

Sigma-Aldrich) to ascertain equivalent loading of the lanes.  

 

Statistical analysis 

Data were analyzed using the two-tailed Student's t-test for comparison between two groups 

or Mann Whitney U test. Significance was defined as P-values < 0.05. 
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RESULTS 

Albendazole reduces severity of psoriasis-like lesions and keratinocyte proliferation  

To investigate whether albendazole inhibits keratinocyte proliferation, we initially used a 

well-characterized model of epidermal hyper-proliferation and abnormal keratinocyte 

differentiation induced in mice by topical application of Aldara cream(30). Our previous time-

course studies showed that mice given Aldara exhibited the more pronounced severe skin pathology 

at day 4 (31). Therefore, this time point was selected to evaluate the therapeutic effect of 

albendazole. In such a model, a daily topical application of albendazole, given 12 hours after Aldara 

treatment, decreased the severity and extent of psoriasis-like lesions in terms of erythema, scaling 

and skin thickening/induration with significant reduction of PASI score (Fig. 1A). H&E staining 

showed reduced epidermal thickness, parakeratosis and cellular infiltration in mice treated with 

albendazole (Fig. 1B). Similar effects were seen when analysis was performed at day 6 of Aldara 

treatment (Suppl. Fig 1A). The immunostaining of ki-67, a marker of cell proliferation, revealed 

less proliferative cells in the epidermal basal stratum of albendazole+Aldara-treated mice as 

compared to Aldara-treated mice (Fig. 1C). Moreover, albendazole treatment decreased expression 

of K6A and K16, two differentiation-specific epidermal keratins induced in hyper-proliferative 

keratinocytes(32, 33) (Fig. 1D). By Western blotting we also showed a reduced expression of  

cleaved caspase-3 following albendazole treatment clearly indicating  the modulatory effect of the 

drug on keratinocytes is not secondary to induction of apoptosis or cell damage (Suppl. Fig 1B-C). 

 

Albendazole reduces the infiltration of immune cells and production of inflammatory molecules in 

the skin of Aldara-treated mice 

Next, we investigated whether the therapeutic effect of albendazole was paralleled by 

reduced infiltration of the skin with neutrophils and T cells, as these cells are supposed to amplify 

pathogenic signals in psoriasis(4, 34). Albendazole-treated mice exhibited reduced cutaneous 

infiltration of CD3- and Ly6G-expressing cells (Fig. 2A and Suppl. Fig.1D) and this associated with 
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significant decrease of inflammatory cytokines, such as IL-6, TNF-α, IL-1β, IL-17A, and IL-

36(α,β,γ) and reduced expression of chemokines involved in the recruitment of neutrophils and T 

cells, such as CCL17, CXCL1, CXCL2 and CXCL5 (Fig. 2B). 

We also examined whether the in vivo anti-proliferative effect of albendazole on keratinocytes was 

secondary to inhibition of production of immune cell-derived cytokines, which are known to 

stimulate keratinocyte growth. To this end, skin explants of Aldara-treated mice were cultured with 

or without albendazole for a short time (i.e. 6 hours) and the levels of K6A, K16, TNF-α and IL-6 

transcripts were then analysed by real-time PCR. Albendazole reduced K6A and K16 RNA 

transcripts without changing IL-6 and TNF-α RNA expression (Fig. 3).  

 

Albendazole reversibly blocks keratinocyte cell growth 

The above findings suggest that albendazole targets primarily keratinocytes. To support this 

hypothesis, we evaluated the anti-proliferative effect of the compound in HaCaT cells, a non-

tumorigenic monoclonal highly proliferating human keratinocyte line, which shares some features 

with psoriatic keratinocytes. In preliminary experiments, we showed that albendazole reduced cell 

viability at doses ranging from 125 nM to 1 μM (Fig. 4A). Therefore, the subsequent studies were 

conducted using 30 nM albendazole. HaCaT cells cultured with albendazole exhibited reduced 

protein expression of K6A and K16, and decreased growth, which was evident at both 24 and 48 

hours (Fig. 4B-C). Such effects were fully reversible, because HaCaT cells proliferated regularly 

after removal of albendazole from the culture (Fig. 4D).  

 

 

Keratinocytes accumulate in S-phase of the cell cycle following albendazole treatment  

In subsequent studies, we assessed the effect of albendazole on cell-cycle progression in 

HaCaT cells. CDK complexes orchestrate the progression through S (Synthesis) and M (Mitosis) 

phases of cell cycle. These steps are precisely regulated by multiple events, including removal of 
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inhibitory phosphorylation on CDKs by CDC25 phosphatase family members(35). Specifically, 

CDC25B and CDC25C control the transition from G2 to M phase by primarily dephosphorylating 

CDK1, while CDC25A plays a more extensive role in assisting G1/S progression by CDK2 

dephosphorylation(36, 37). The albendazole-induced cell growth inhibition was associated with 

accumulation of cells in S phase, reduction of CDC25A protein expression, and up-regulation of 

CDK2 phosphorylation, while protein levels of CDC25B and CDC25C remain unchanged (Fig. 5A-

B). Similarly, HEKa accumulated in S-phase of cell cycle after albendazole treatment (Suppl. Fig. 

2A-B). No significant change in CDC25A mRNA expression was seen in albendazole-treated cells 

(Fig. 5C), indicating that the inhibitory effect of the compound on CDC25 expression occurs at 

post-transcriptional level. 

 

Albendazole promotes PKR-mediated eIF2α inactivation and inhibition of inflammatory molecules 

in keratinocytes. 

Many forms of cellular stress, such as hypoxia, nutrient deprivation, DNA damage, 

misfolded protein accumulation and endoplasmic reticulum stress can cause cell cycle arrest 

through the phosphorylation on serine residue 51 of the α subunit of the eIF2α(38−40). This 

phenomenon is mediated by several up-stream kinases, such as PKR, PERK, GCN2 and results in 

the inhibition of translation machinery of several RNAs, with the downstream effect of suppressing 

protein expression of many regulators of cell cycle, including CDC25A(41). Therefore, we assessed 

whether reduction of CDC25A protein content and arrest of the cell cycle in the S-phase following 

albendazole treatment was associated with changes in the phosphorylation of eIF2α. Treatment of 

HaCaT cells with albendazole led to increased eIF2α phosphorylation, which was evident as early 

as 15 minutes following albendazole treatment and was maintained during the various time points 

of the experiment (Fig. 6A, upper blot). Hyper-phosphorylation of eIF2α and accumulation of the 

cells in S-phase of the cell cycle were documented in HaCaT after treatment with Salubrinal, a 

specific eIF2α inhibitor; addition of albendazole to these cultures caused no further change in eIF2α 
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phosphorylation and in the number of cells accumulated in S-phase of the cell cycle (Suppl. Fig.2C-

D). 

Time-course studies showed also that eIF2α phosphorylation was preceded by 

phosphorylation of PKR (Thr446) (Fig. 6A), while expression of phosphorylated PEKR and GCN2 

remained unchanged (data not shown). Down-regulation of PKR expression with a specific siRNA 

prevented albendazole-mediated eIF2α phosphorylation (Suppl. Fig 2E and Fig. 6B) as well as 

abrogated the albendazole-mediated inhibitory effect on IL-6, IL-8, IL-1β, and CCL5 expression in 

TNFα-activated keratinocytes (Fig. 6C-D and Suppl. Fig 2F-G).  

To translate these data in vivo, phosphorylation of eIF2α and PKR and expression of 

CDC25A were evaluated in the skin of Aldara-treated mice receiving or not albendazole. 

Albendazole enhanced phosphorylation of both eIF2α and PKR and this was associated with 

reduction of CDC25A protein expression (Fig. 7). 
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DISCUSSION 

Enhanced keratinocyte proliferation is documented in the psoriatic skin and supposed to 

make a valid contribution to the pathogenesis of psoriasis(42, 43). Therefore, compounds 

interfering with keratinocyte proliferation could be useful in the management of psoriatic 

patients(44). Drug repurposing known also as drug repositioning or drug reprofiling is an approach 

aimed at investigating whether drugs, which are already approved to treat pathologies, are safe and 

effective for treating other diseases. Drug repurposing offers significant benefits to the 

pharmaceutical industries as it overcomes most of the cost and time-consuming hurdles during the 

drug development process.  

This study was undertaken to evaluate whether albendazole, a well-characterized anti-

helmintic drug commonly used for the treatment of parenchymal neurocysticercosis, has the 

potential to inhibit keratinocyte proliferation and attenuate psoriasis-like skin lesions. Initial studies 

performed in a well-characterized mouse model of psoriasis induced by Aldara (30, 31) showed that 

topical application of albendazole drastically reduced the severity and extent of skin lesions. Mice 

treated with albendazole exhibit reduced epidermal thickness, parakeratosis and rete ridges 

development associated with decreased number of proliferating keratinocytes in the basal layer of 

epidermis and downregulation of K6A and K16, two differentiation-specific epidermal markers 

overexpressed in psoriatic epidermis(32, 33). Immunohistochemical analysis of skin sections 

revealed in the albendazole-treated mice reduced skin infiltration of CD3- and Ly6G-positive cells, 

which was associated with decreased expression of inflammatory mediators such as IL-6, TNF-α, 

IL-1β, IL-17A, IL-36, CCL17, CXCL1, CXCL2 and CXCL5. To evaluate whether the inhibitory 

effect of albendazole on keratinocytes was secondary to the reduced production of such 

inflammatory cytokines, we cultured skin explants of Aldara-treated mice with albendazole for a 

short time and then RNA expression of keratinocyte markers and immune markers was evaluated 

by real-time PCR. Albendazole treatment reduced expression of K6A and K16 without modifying 

IL-6 and TNF-α RNA transcripts, thus suggesting that the inhibitory effect of the drug on 
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keratinocytes precedes its modulatory action on immune cells. Consistently, albendazole inhibited 

proliferation of HaCaT cell line, a highly proliferating human keratinocyte cell line, at 

concentrations that were associated with no induction of cell death. Overall these data are in line 

with previous studies showing a negative effect of albendazole on other epithelial cell types and 

particularly epithelial cancer cells(27, 45).  

The anti-proliferative effect of the drug was reversible and marked by accumulation of cells 

in S phase of cell cycle. This phenomenon was accompanied by reduced protein expression of 

CDC25A, a phosphatase that controls progression through S phase of cell cycle(46, 47). Inhibition 

of CDC25A by albendazole occurred at protein and not RNA level, thus implying a post-

transcriptional control of CDC25A. Interestingly, treatment of keratinocytes with albendazole 

triggered phosphorylation of eIF2α, a key regulator of translation attenuation and suppressor of 

CDC25A protein expression(48) both in HaCaT and primary keratinocytes (HEKa). The 

intracellular target of albendazole and the exact molecular mechanism by which the drug regulates 

the cell cycle machinery in keratinocyte remain to be ascertained. It is known that albendazole 

inhibits tubulin polymerization and blockage of glucose uptake(23-25), two phenomena which 

could eventually induce cellular stress and promote activation of kinases involved in the control of 

cell cycle (39, 40). However, inhibition of tubulin polymerization should cause a block of cells in 

G2/M phase rather than S-phase of the cell cycle. It is thus conceivable that, at least in 

keratinocytes, at the specified concentrations albendazole does not act primarily as a microtubule 

inhibitor. Time-course studies showed that phosphorylation of eIF2α was preceded by 

phosphorylation of PKR while other up-stream kinases, such as PEKR and GCN2, were not 

affected by albendazole. We are confident that PKR can be involved in the 

phosphorylation/inactivation of eIF2α, as previous studies have shown that eIF2α is a major target 

of PKR(49), and data of the present work show that specific silencing of PKR prevented 

albendazole-mediated eIF2α phosphorylation and the production of inflammatory mediators 
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involved in psoriasis pathogenesis. Consistently, Aldara-treated mice receiving albendazole had 

elevated levels of phosphorylated PKR and eIF2α and reduced levels of CDC25A in the skin.  

In conclusion, our findings reveal a novel inhibitory action of albendazole on keratinocyte 

proliferation, which associates with a therapeutic effect in a murine model of psoriasis.    
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Figure Legends  

Figure 1. Albendazole treatment reduces severity of psoriasis-like lesions and keratinocyte 

proliferation. A) C57bl/6 mice treated with vehicle, Aldara cream and Aldara+albendazole for 4 

consecutive days. Albendazole (30μg/mouse) was topically applied each day starting 12 hours after 

Aldara treatment. Photographs of representative shaved back skin of the mice are shown. Right 

inset shows the Psoriasis Area Severity Index (PASI) score (0=none; 1=mild; 2=moderate; 

3=severe; 4=very severe, for each of the following parameters: erythema, scaling and induration) 

evaluated at day 4 in the untreated and treated mice. Values indicate mean ± SD of 3 experiments 

analysing in total 12 mice per group. (Vehicle-treated mice vs Aldara-treated mice; *P<0.05). 

(Aldara-treated mice vs Aldara+albendazole-treated mice; **P<0.05). B) Representative 

hematoxylin and eosin (H&E)-stained skin sections of mice treated as above. One of 3 separate 

experiments in which 12 mice/group were analyzed is shown. Epidermal thickness (right inset) was 

evaluated in H&E-stained skin sections of mice by measuring the distance from the basal lamina 

(black dashed line) to the bottom of the stratum corneum. This analysis was performed in at least 4 

fields per section of all the skin samples. Data are expressed as mean ± SD of all experiments. 

(Vehicle-treated mice vs Aldara-treated mice; *P<0.05). (Aldara-treated mice vs 

Aldara+albendazole-treated mice; **P<0.05). C) Representative immunostaining for ki67 of skin 

sections of mice treated as indicated above. Staining with isotype IgG is also shown. Right inset 

indicates the percentage of skin area covered by ki67-positive cells. Values indicate mean ± SD. 

Aldara-treated mice vs Aldara+albendazole-treated mice *P<0.05. D) Total proteins extracted from 

the back skin of mice treated as above were analyzed for keratin (K) 6A and K16 expression by 

Western blotting. The blot is representative of 3 separate experiments in which similar results were 

obtained. β-actin was used as loading control.  

 

Figure 2. Topically application of albendazole reduces inflammatory signals in the skin of 

psoriatic mice. A) Representative immunostaining for CD3+ and Ly6G+ cells in skin sections 
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taken from the back of psoriatic mice treated with Aldara or with Aldara+albendazole for 4 

consecutive days. Albendazole (30μg) was topically applied each day starting 12 hours after Aldara 

treatment. Staining with isotype IgG is also shown. Right inset indicates the percentage of skin area 

covered by CD3+/Ly6G+ cells. Values indicate mean ± SD. (Aldara-treated mice vs 

Aldara+albendazole-treated mice; **P<0.05). B) Albendazole reduces IL-6, TNF-α, IL-1β, IL-17A, 

CCL17, IL-36 (α,β,γ), CXCL1, CXCL2 and CXCL5 mRNA expression in the skin of psoriatic 

mice treated as above. RNA transcripts were determined by Real-time PCR and normalized to β-

actin. Data indicate mean ± SEM of three separate experiments in which 12 mice/group were 

included. (Vehicle-treated mice vs Aldara-treated mice; *P<0.05). (Aldara-treated mice vs 

Aldara+albendazole-treated mice; **P<0.05). 

 

Figure 3. Ex-vivo short-term treatment of psoriatic skin explants with albendazole reduces 

expression of keratinocyte genes (i.e. K6A and K16) without affecting expression of 

inflammatory molecules (i.e. IL-6 and TNF-α). Murine skin samples taken from shaved C57bl/6 

mice treated with Aldara cream for 2 consecutive days were cultured with or without albendazole 

(30μg) for 6h. RNA transcripts for K6A, K16, IL-6 and TNF-α were analyzed by Real-time PCR 

and normalized to β-actin. Data indicate mean ± SEM of three separate experiments: in each 

experiment at least 3 mice per group were considered. (Aldara-treated mice vs Aldara+albendazole-

treated mice; *P<0.05). 

 

Figure 4. Albendazole reversibly blocks keratinocyte proliferation. A) Representative dot plots 

showing the percentages of AV- and/or PI-positive HaCaT cells. Cells were treated with increasing 

concentrations of albendazole (ranging from 30 nM to 1 μM) for 24h and then assessed by flow 

cytometry analysis. Representative histograms (right panel) showing the percentage of HaCaT cell 

death treated as indicated above. Data are expressed as mean ± SEM of 3 separate experiments. 

Dimethyl sulfoxide (DMSO) and Staurosporine were included as internal controls. B) Treatment of 
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HaCaT cells with albendazole (30 nM) associates with reduction of keratin (K) 6A and K16 protein 

expression. Cells were stimulated for 24h with and without of albendazole and K6A and K16 were 

evaluated by Western blotting. β-actin was used as loading control. One of 3 representative 

experiments, in which similar results were obtained, is shown. C) Albendazole treatment reduces 

keratinocyte proliferation. Cells were incubated in the presence/absence of albendazole (30 nM) for 

24h and 48h and 5-bromo-2-deoxyuridine (BrdU) was added to the cell cultures 6 hours before the 

end of the treatment. BrdU-positive cells were evaluated by colorimetric assay. Data are expressed 

as percentage of BrdU-incorporated cells over control (unstimulated) and indicate mean ± SEM of 3 

separate experiments. Albendazole-treated cells vs unstimulated cells. *P<0.05. D) Albendazole 

(alb) reversibly blocks keratinocyte proliferation. HaCaT were incubated in the presence or absence 

of albendazole for 24h, then washed and  cultured for further 24 h in fresh medium (M) in the 

absence of albendazole. BrdU was added to the cell cultures 6 hours before the end of the treatment 

and BrdU-positive cells were evaluated by colorimetric assay. Data are expressed as percentage of 

BrdU-incorporated cells over control and indicate mean ± SEM of 4 separate experiments. *P<0.05. 

Unst: unstimulated. 

 

Figure 5. Albendazole induces keratinocytes to arrest in S-phase of the cell cycle. A) Cells were 

incubated in the presence or absence of albendazole (30 nM) for 24h and cell cycle distribution was 

then assessed by 5-bromo-2-deoxyuridine (BrdU) incorporation by flow cytometry. The panels at 

the bottom indicate representative dot-plots showing the percentages of AV- and/or PI-positive 

cells. Data in the right panels indicate the percentages of cells in the different phases of cell cycle 

(upper inset) and the percentage of cell death (botton inset), as assessed by flow cytometry analysis. 

Values indicate mean ± SD of 4 separate experiments. (Unstimulated vs albendazole-treated cells; 

*P<0.05). B) Albendazole treatment enhances the expression of CDK2 phosphorylation. HaCaT 

cells were either left untreated or stimulated with albendazole for 24h. p-CDK2 (Tyr15), CDK2, 

CDC25A, CDC25B, CDC25C and β-actin expression was analyzed by Western blotting. One of 3 
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representative experiments in which similar results were obtained is shown. C) Albendazole 

treatment does not change CDC25A mRNA expression. HaCaT cells were incubated with 

albendazole for 4, 8 and 24h and CDC25A transcripts were evaluated by real-time PCR. Levels are 

normalized to β-actin. Values are mean ± SEM of three experiments. Unst: unstimulated. 

 

Figure 6.  Albendazole treatment induces PKR-mediated eIF2α phosphorylation and 

inflammatory molecules inhibition in keratinocytes. A) HaCaT cells were incubated for 5, 15, 

30, 60 and 120 minutes with albendazole and p-eIF2α (Ser51), eIF2α, p-PKR (Thr446), PKR and β-

actin expression was analyzed by Western blotting. One of 3 representative experiments in which 

similar results were obtained is shown. Time-course studies show that phosphorylation of PKR 

precedes phosphorylation of eIF2α. B) HaCaT cells were transfected with either scrambled-siRNA 

or PKR-siRNA (both used at 100nM). After 24 h, cells were incubated for further 30’ in presence or 

absence of albendazole and p-eIF2α (Ser51), eIF2α, PKR and β-actin were analyzed by Western 

blotting. One of 3 experiments in which similar results were obtained is shown. C) Albendazole 

reduces IL-6, IL-8, IL-1β and CCL5 mRNA expression in TNFα-activated HaCaT cells. RNA 

transcripts were determined by Real-time PCR and normalized to β-actin. Data indicate mean ± 

SEM of four separate experiments. (Unstimulated vs TNFα-treated cells; *P<0.05). (TNFα-treated 

vs TNFα+albendazole-treated cells; **P<0.05).  

D) Down-regulation of PKR expression with a specific siRNA (100nM) prevented albendazole-

mediated inhibitory effect on IL-6, IL-8, IL-1β, and CCL5 expression in TNFα−activated HaCaT 

cells). RNA transcripts were determined by Real-time PCR and normalized to β-actin. Data indicate 

mean ± SEM of three separate experiments (PKRsiRNA-treated vs PKRsiRNA+TNFα-treated cells 

*P<0.05). 

 

Figure 7.  Albendazole treatment induces PKR-mediated eIF2α phosphorylation in vivo. 
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Representative Western blots for p-eIF2α (Ser51), eIF2α, CDC25A, p-PKR (Thr446), PKR and β-

actin. Total proteins were extracted from the shaved back skin of mice treated with Aldara and 

Aldara+albendazole for 4 consecutive days. Albendazole (30μg) was topically applied each day 

starting 12 hours after Aldara treatment (12 mice/group).  
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