2 research outputs found

    Development and in Vitro Evaluation of a Microbicide Gel Formulation for a Novel Non-Nucleoside Reverse Transcriptase Inhibitor Belonging to the N-Dihydroalkyloxybenzyloxopyrimidines (N-DABOs) Family

    Get PDF
    17openPreventing HIV transmission by the use of a vaginal microbicide is a topic of considerable interest in the fight against AIDS. Both a potent anti-HIV agent and an efficient formulation are required to develop a successful microbicide. In this regard, molecules able to inhibit the HIV replication before the integration of the viral DNA into the genetic material of the host cells, such as entry inhibitors or reverse transcriptase inhibitors (RTIs), are ideal candidates for prevention purpose. Among RTIs, S- and N-dihydroalkyloxybenzyloxopyrimidines (S-DABOs and N-DABOs) are interesting compounds active at nanomolar concentration against wild type of RT and with a very interesting activity against RT mutations. Herein, novel N-DABOs were synthesized and tested as anti-HIV agents. Furthermore, their mode of binding was studied by molecular modeling. At the same time, a vaginal microbicide gel formulation was developed and tested for one of the most promising candidates.openTintori, Cristina; Brai, Annalaura; DASSO LANG, MARIA CHIARA; Deodato, Davide; Greco, Antonia Michela; Bizzarri, Bruno Mattia; Cascone, Lorena; Casian, Alexandru; Zamperini, Claudio; Dreassi, Elena; Crespan, Emmanuele; Maga, Giovanni; Vanham, Guido; Ceresola, Elisa; Canducci, Filippo; Ariën, Kevin K.; Botta, MaurizioTintori, Cristina; Brai, Annalaura; DASSO LANG, MARIA CHIARA; Deodato, Davide; Greco, Antonia Michela; Bizzarri, Bruno Mattia; Cascone, Lorena; Casian, Alexandru; Zamperini, Claudio; Dreassi, Elena; Crespan, Emmanuele; Maga, Giovanni; Vanham, Guido; Ceresola, Elisa; Canducci, Filippo; Ariën, Kevin K.; Botta, Maurizi

    ボルツマンマシン ノ サイテキカ モンダイ エノ オウヨウ サイテキカ ノ スウリ ト ソノ オウヨウ

    Get PDF
    Influenza is an infectious disease that represents an important public health burden, with high impact on the global morbidity, mortality, and economy. The poor protection and the need of annual updating of the anti-influenza vaccine, added to the rapid emergence of viral strains resistant to current therapy make the need for antiviral drugs with novel mechanisms of action compelling. In this regard, the viral RNA polymerase is an attractive target that allows the design of selective compounds with reduced risk of resistance. In previous studies we showed that the inhibition of the polymerase acidic protein-basic protein 1 (PA–PB1) interaction is a promising strategy for the development of anti-influenza agents. Starting from the previously identified 3-cyano-4,6-diphenyl-pyridines, we chemically modified this scaffold and explored its structure–activity relationships. Noncytotoxic compounds with both the ability of disrupting the PA–PB1 interaction and antiviral activity were identified, and their mechanism of target binding was clarified with molecular modeling simulations
    corecore