74 research outputs found

    Value of cerebrospinal fluid α-synuclein species as biomarker in Parkinson's diagnosis and prognosis.

    Get PDF
    Since diagnosis of Parkinson's disease (PD) is mostly based on clinical criteria, it is almost impossible to formulate an early diagnosis, as well as a timely differential diagnosis versus other parkinsonisms. A great effort in searching reliable biomarkers both for early diagnosis and prognosis in PD is currently ongoing. Cerebrospinal fluid has been widely investigated as potential source for such biomarkers, with particular emphasis on α-synuclein (α-syn) species. We reviewed all the clinical studies carried out so far on cerebrospinal fluid quantification of α-syn species in PD. Current evidence supports the value of total and oligomeric α-syn in PD diagnosis and in the differential diagnosis of PD and other parkinsonisms. Conversely, the role of α-syn species in PD prognosis remains unsatisfactory

    Detection of endometrial cancer in cervico-vaginal fluid and blood plasma:leveraging proteomics and machine learning for biomarker discovery

    Get PDF
    BACKGROUND: The anatomical continuity between the uterine cavity and the lower genital tract allows for the exploitation of uterine-derived biomaterial in cervico-vaginal fluid for endometrial cancer detection based on non-invasive sampling methodologies. Plasma is an attractive biofluid for cancer detection due to its simplicity and ease of collection. In this biomarker discovery study, we aimed to identify proteomic signatures that accurately discriminate endometrial cancer from controls in cervico-vaginal fluid and blood plasma.METHODS: Blood plasma and Delphi Screener-collected cervico-vaginal fluid samples were acquired from symptomatic post-menopausal women with (n = 53) and without (n = 65) endometrial cancer. Digitised proteomic maps were derived for each sample using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Machine learning was employed to identify the most discriminatory proteins. The best diagnostic model was determined based on accuracy and model parsimony.FINDINGS: A protein signature derived from cervico-vaginal fluid more accurately discriminated cancer from control samples than one derived from plasma. A 5-biomarker panel of cervico-vaginal fluid derived proteins (HPT, LG3BP, FGA, LY6D and IGHM) predicted endometrial cancer with an AUC of 0.95 (0.91-0.98), sensitivity of 91% (83%-98%), and specificity of 86% (78%-95%). By contrast, a 3-marker panel of plasma proteins (APOD, PSMA7 and HPT) predicted endometrial cancer with an AUC of 0.87 (0.81-0.93), sensitivity of 75% (64%-86%), and specificity of 84% (75%-93%). The parsimonious model AUC values for detection of stage I endometrial cancer in cervico-vaginal fluid and blood plasma were 0.92 (0.87-0.97) and 0.88 (0.82-0.95) respectively.INTERPRETATION: Here, we leveraged the natural shed of endometrial tumours to potentially develop an innovative approach to endometrial cancer detection. We show proof of principle that endometrial cancers secrete unique protein signatures that can enable cancer detection via cervico-vaginal fluid assays. Confirmation in a larger independent cohort is warranted.FUNDING: Cancer Research UK, Blood Cancer UK, National Institute for Health Research.</p

    Evidence for Elevated Cerebrospinal Fluid ERK1/2 Levels in Alzheimer Dementia

    Get PDF
    Cerebrospinal fluid (CSF) samples from 33 patients with Alzheimer dementia (AD), 21 patients with mild cognitive impairment who converted to AD during followup (MCI-AD), 25 patients with stable mild cognitive impairment (MCI-stable), and 16 nondemented subjects (ND) were analyzed with a chemiluminescence immunoassay to assess the levels of the mitogen-activated protein kinase ERK1/2 (extracellular signal-regulated kinase 1/2). The results were evaluated in relation to total Tau (tTau), phosphorylated Tau (pTau), and beta-amyloid 42 peptide (Aβ42). CSF-ERK1/2 was significantly increased in the AD group as compared to stable MCI patients and the ND group. Western blot analysis of a pooled cerebrospinal fluid sample revealed that both isoforms, ERK1 and ERK2, and low amounts of doubly phosphorylated ERK2 were detectable. As a predictive diagnostic AD biomarker, CSF-ERK1/2 was inferior to tTau, pTau, and Aβ42

    Detection of endometrial cancer in cervico-vaginal fluid and blood plasma:leveraging proteomics and machine learning for biomarker discovery

    Get PDF
    BACKGROUND: The anatomical continuity between the uterine cavity and the lower genital tract allows for the exploitation of uterine-derived biomaterial in cervico-vaginal fluid for endometrial cancer detection based on non-invasive sampling methodologies. Plasma is an attractive biofluid for cancer detection due to its simplicity and ease of collection. In this biomarker discovery study, we aimed to identify proteomic signatures that accurately discriminate endometrial cancer from controls in cervico-vaginal fluid and blood plasma.METHODS: Blood plasma and Delphi Screener-collected cervico-vaginal fluid samples were acquired from symptomatic post-menopausal women with (n = 53) and without (n = 65) endometrial cancer. Digitised proteomic maps were derived for each sample using sequential window acquisition of all theoretical mass spectra (SWATH-MS). Machine learning was employed to identify the most discriminatory proteins. The best diagnostic model was determined based on accuracy and model parsimony.FINDINGS: A protein signature derived from cervico-vaginal fluid more accurately discriminated cancer from control samples than one derived from plasma. A 5-biomarker panel of cervico-vaginal fluid derived proteins (HPT, LG3BP, FGA, LY6D and IGHM) predicted endometrial cancer with an AUC of 0.95 (0.91-0.98), sensitivity of 91% (83%-98%), and specificity of 86% (78%-95%). By contrast, a 3-marker panel of plasma proteins (APOD, PSMA7 and HPT) predicted endometrial cancer with an AUC of 0.87 (0.81-0.93), sensitivity of 75% (64%-86%), and specificity of 84% (75%-93%). The parsimonious model AUC values for detection of stage I endometrial cancer in cervico-vaginal fluid and blood plasma were 0.92 (0.87-0.97) and 0.88 (0.82-0.95) respectively.INTERPRETATION: Here, we leveraged the natural shed of endometrial tumours to potentially develop an innovative approach to endometrial cancer detection. We show proof of principle that endometrial cancers secrete unique protein signatures that can enable cancer detection via cervico-vaginal fluid assays. Confirmation in a larger independent cohort is warranted.FUNDING: Cancer Research UK, Blood Cancer UK, National Institute for Health Research.</p

    A Prostate Cancer Proteomics Database for SWATH-MS Based Protein Quantification

    Get PDF
    From MDPI via Jisc Publications RouterHistory: accepted 2021-11-04, pub-electronic 2021-11-08Publication status: PublishedFunder: Medical Research Council; Grant(s): MR/M008959Funder: CRUK Manchester Centre award; Grant(s): C5759/A25254Prostate cancer is the most frequent form of cancer in men, accounting for more than one-third of all cases. Current screening techniques, such as PSA testing used in conjunction with routine procedures, lead to unnecessary biopsies and the discovery of low-risk tumours, resulting in overdiagnosis. SWATH-MS is a well-established data-independent (DI) method requiring prior knowledge of targeted peptides to obtain valuable information from SWATH maps. In response to the growing need to identify and characterise protein biomarkers for prostate cancer, this study explored a spectrum source for targeted proteome analysis of blood samples. We created a comprehensive prostate cancer serum spectral library by combining data-dependent acquisition (DDA) MS raw files from 504 patients with low, intermediate, or high-grade prostate cancer and healthy controls, as well as 304 prostate cancer-related protein in silico assays. The spectral library contains 114,684 transitions, which equates to 18,479 peptides translated into 1227 proteins. The robustness and accuracy of the spectral library were assessed to boost confidence in the identification and quantification of prostate cancer-related proteins across an independent cohort, resulting in the identification of 404 proteins. This unique database can facilitate researchers to investigate prostate cancer protein biomarkers in blood samples. In the real-world use of the spectrum library for biomarker detection, using a signature of 17 proteins, a clear distinction between the validation cohort’s pre- and post-treatment groups was observed. Data are available via ProteomeXchange with identifier PXD028651
    corecore