187 research outputs found

    Multiple Measures Reveal Antiretroviral Adherence Successes and Challenges in HIV-Infected Ugandan Children

    Get PDF
    Background: Adherence to HIV antiretroviral therapy (ART) among children in developing settings is poorly understood. Methodology/Principal Findings: To understand the level, distribution, and correlates of ART adherence behavior, we prospectively determined monthly ART adherence through multiple measures and six-monthly HIV RNA levels among 121 Ugandan children aged 2–10 years for one year. Median adherence levels were 100% by three-day recall, 97.4% by 30-day visual analog scale, 97.3% by unannounced pill count/liquid formulation weights, and 96.3% by medication event monitors (MEMS). Interruptions in MEMS adherence of ≥\geq48 hours were seen in 57.0% of children; 36.3% had detectable HIV RNA at one year. Only MEMS correlated significantly with HIV RNA levels (r = −0.25, p = 0.04). Multivariable regression found the following to be associated with <90% MEMS adherence: hospitalization of child (adjusted odds ratio [AOR] 3.0, 95% confidence interval [CI] 1.6–5.5; p = 0.001), liquid formulation use (AOR 1.4, 95%CI 1.0–2.0; p = 0.04), and caregiver’s alcohol use (AOR 3.1, 95%CI 1.8–5.2; p<0.0001). Child’s use of co-trimoxazole (AOR 0.5, 95%CI 0.4–0.9; p = 0.009), caregiver’s use of ART (AOR 0.6, 95%CI 0.4–0.9; p = 0.03), possible caregiver depression (AOR 0.6, 95%CI 0.4–0.8; p = 0.001), and caregiver feeling ashamed of child’s HIV status (AOR 0.5, 95%CI 0.3–0.6; p<0.0001) were protective against <90% MEMS adherence. Change in drug manufacturer (AOR 4.1, 95%CI 1.5–11.5; p = 0.009) and caregiver’s alcohol use (AOR 5.5, 95%CI 2.8–10.7; p<0.0001) were associated with ≥\geq48-hour interruptions by MEMS, while second-line ART (AOR 0.3, 95%CI 0.1–0.99; p = 0.049) and increasing assets (AOR 0.7, 95%CI 0.6–0.9; p = 0.0007) were protective against these interruptions. Conclusions/Significance: Adherence success depends on a well-established medication taking routine, including caregiver support and adequate education on medication changes. Caregiver-reported depression and shame may reflect fear of poor outcomes, functioning as motivation for the child to adhere. Further research is needed to better understand and build on these key influential factors for adherence intervention development

    Bioluminescent Imaging Reveals Divergent Viral Pathogenesis in Two Strains of Stat1-Deficient Mice, and in αßγ Interferon Receptor-Deficient Mice

    Get PDF
    Pivotal components of the IFN response to virus infection include the IFN receptors (IFNR), and the downstream factor signal transducer and activator of transcription 1 (Stat1). Mice deficient for Stat1 and IFNR (Stat1−/− and IFNαßγR−/− mice) lack responsiveness to IFN and exhibit high sensitivity to various pathogens. Here we examined herpes simplex virus type 1 (HSV-1) pathogenesis in Stat1−/− mice and in IFNαßγR−/− mice following corneal infection and bioluminescent imaging. Two divergent and paradoxical patterns of infection were observed. Mice with an N-terminal deletion in Stat1 (129Stat1−/− (N-term)) had transient infection of the liver and spleen, but succumbed to encephalitis by day 10 post-infection. In stark contrast, infection of IFNαßγR−/− mice was rapidly fatal, with associated viremia and fulminant infection of the liver and spleen, with infected infiltrating cells being primarily of the monocyte/macrophage lineage. To resolve the surprising difference between Stat1−/− and IFNαßγR−/− mice, we infected an additional Stat1−/− strain deleted in the DNA-binding domain (129Stat1−/− (DBD)). These 129Stat1−/− (DBD) mice recapitulated the lethal pattern of liver and spleen infection seen following infection of IFNαßγR−/− mice. This lethal pattern was also observed when 129Stat1−/− (N-term) mice were infected and treated with a Type I IFN-blocking antibody, and immune cells derived from 129Stat1−/− (N-term) mice were shown to be responsive to Type I IFN. These data therefore show significant differences in viral pathogenesis between two commonly-used Stat1−/− mouse strains. The data are consistent with the hypothesis that Stat1−/− (N-term) mice have residual Type I IFN receptor-dependent IFN responses. Complete loss of IFN signaling pathways allows viremia and rapid viral spread with a fatal infection of the liver. This study underscores the importance of careful comparisons between knockout mouse strains in viral pathogenesis, and may also be relevant to the causation of HSV hepatitis in humans, a rare but frequently fatal infection

    Dibucaine Mitigates Spreading Depolarization in Human Neocortical Slices and Prevents Acute Dendritic Injury in the Ischemic Rodent Neocortex

    Get PDF
    Spreading depolarizations that occur in patients with malignant stroke, subarachnoid/intracranial hemorrhage, and traumatic brain injury are known to facilitate neuronal damage in metabolically compromised brain tissue. The dramatic failure of brain ion homeostasis caused by propagating spreading depolarizations results in neuronal and astroglial swelling. In essence, swelling is the initial response and a sign of the acute neuronal injury that follows if energy deprivation is maintained. Choosing spreading depolarizations as a target for therapeutic intervention, we have used human brain slices and in vivo real-time two-photon laser scanning microscopy in the mouse neocortex to study potentially useful therapeutics against spreading depolarization-induced injury.We have shown that anoxic or terminal depolarization, a spreading depolarization wave ignited in the ischemic core where neurons cannot repolarize, can be evoked in human slices from pediatric brains during simulated ischemia induced by oxygen/glucose deprivation or by exposure to ouabain. Changes in light transmittance (LT) tracked terminal depolarization in time and space. Though spreading depolarizations are notoriously difficult to block, terminal depolarization onset was delayed by dibucaine, a local amide anesthetic and sodium channel blocker. Remarkably, the occurrence of ouabain-induced terminal depolarization was delayed at a concentration of 1 µM that preserves synaptic function. Moreover, in vivo two-photon imaging in the penumbra revealed that, though spreading depolarizations did still occur, spreading depolarization-induced dendritic injury was inhibited by dibucaine administered intravenously at 2.5 mg/kg in a mouse stroke model.Dibucaine mitigated the effects of spreading depolarization at a concentration that could be well-tolerated therapeutically. Hence, dibucaine is a promising candidate to protect the brain from ischemic injury with an approach that does not rely on the complete abolishment of spreading depolarizations

    Asian Pacific Society of Cardiology Consensus Recommendations on the Use of MitraClip for Mitral Regurgitation

    Get PDF
    Transcatheter mitral valve repair with the MitraClip, a catheter-based percutaneous edge-to-edge repair technique to correct mitral regurgitation (MR), has been demonstrated in Western studies to be an effective and safe MR treatment strategy. However, randomised clinical trial data on its use in Asian-Pacific patients is limited. Hence, the Asian Pacific Society of Cardiology convened an expert panel to review the available literature on MitraClip and to develop consensus recommendations to guide clinicians in the region. The panel developed statements on the use of MitraClip for the management of degenerative MR, functional MR, and other less common indications, such as acute MR, dynamic MR, hypertrophic obstructive cardiomyopathy, and MR after failed surgical repair. Each statement was voted on by each panel member and consensus was reached when 80% of experts voted ‘agree’ or ‘neutral’. This consensus-building process resulted in 10 consensus recommendations to guide general cardiologists in the evaluation and management of patients in whom MitraClip treatment is being contemplated

    Microbiome to Brain:Unravelling the Multidirectional Axes of Communication

    Get PDF
    The gut microbiome plays a crucial role in host physiology. Disruption of its community structure and function can have wide-ranging effects making it critical to understand exactly how the interactive dialogue between the host and its microbiota is regulated to maintain homeostasis. An array of multidirectional signalling molecules is clearly involved in the host-microbiome communication. This interactive signalling not only impacts the gastrointestinal tract, where the majority of microbiota resides, but also extends to affect other host systems including the brain and liver as well as the microbiome itself. Understanding the mechanistic principles of this inter-kingdom signalling is fundamental to unravelling how our supraorganism function to maintain wellbeing, subsequently opening up new avenues for microbiome manipulation to favour desirable mental health outcome

    Stroke genetics informs drug discovery and risk prediction across ancestries

    Get PDF
    Previous genome-wide association studies (GWASs) of stroke - the second leading cause of death worldwide - were conducted predominantly in populations of European ancestry(1,2). Here, in cross-ancestry GWAS meta-analyses of 110,182 patients who have had a stroke (five ancestries, 33% non-European) and 1,503,898 control individuals, we identify association signals for stroke and its subtypes at 89 (61 new) independent loci: 60 in primary inverse-variance-weighted analyses and 29 in secondary meta-regression and multitrait analyses. On the basis of internal cross-ancestry validation and an independent follow-up in 89,084 additional cases of stroke (30% non-European) and 1,013,843 control individuals, 87% of the primary stroke risk loci and 60% of the secondary stroke risk loci were replicated (P < 0.05). Effect sizes were highly correlated across ancestries. Cross-ancestry fine-mapping, in silico mutagenesis analysis(3), and transcriptome-wide and proteome-wide association analyses revealed putative causal genes (such as SH3PXD2A and FURIN) and variants (such as at GRK5 and NOS3). Using a three-pronged approach(4), we provide genetic evidence for putative drug effects, highlighting F11, KLKB1, PROC, GP1BA, LAMC2 and VCAM1 as possible targets, with drugs already under investigation for stroke for F11 and PROC. A polygenic score integrating cross-ancestry and ancestry-specific stroke GWASs with vascular-risk factor GWASs (integrative polygenic scores) strongly predicted ischaemic stroke in populations of European, East Asian and African ancestry(5). Stroke genetic risk scores were predictive of ischaemic stroke independent of clinical risk factors in 52,600 clinical-trial participants with cardiometabolic disease. Our results provide insights to inform biology, reveal potential drug targets and derive genetic risk prediction tools across ancestries.</p

    Review of Journal of Cardiovascular Magnetic Resonance 2013

    Full text link
    • …
    corecore