30 research outputs found

    Generalized Quantum Theory of Recollapsing Homogeneous Cosmologies

    Full text link
    A sum-over-histories generalized quantum theory is developed for homogeneous minisuperspace type A Bianchi cosmological models, focussing on the particular example of the classically recollapsing Bianchi IX universe. The decoherence functional for such universes is exhibited. We show how the probabilities of decoherent sets of alternative, coarse-grained histories of these model universes can be calculated. We consider in particular the probabilities for classical evolution defined by a suitable coarse-graining. For a restricted class of initial conditions and coarse grainings we exhibit the approximate decoherence of alternative histories in which the universe behaves classically and those in which it does not. For these situations we show that the probability is near unity for the universe to recontract classically if it expands classically. We also determine the relative probabilities of quasi-classical trajectories for initial states of WKB form, recovering for such states a precise form of the familiar heuristic "J d\Sigma" rule of quantum cosmology, as well as a generalization of this rule to generic initial states.Comment: 41 pages, 4 eps figures, revtex 4. Modest revisions throughout. Physics unchanged. To appear in Phys. Rev.

    Gravito-electromagnetic analogies

    Full text link
    We reexamine and further develop different gravito-electromagnetic (GEM) analogies found in the literature, and clarify the connection between them. Special emphasis is placed in two exact physical analogies: the analogy based on inertial fields from the so-called "1+3 formalism", and the analogy based on tidal tensors. Both are reformulated, extended and generalized. We write in both formalisms the Maxwell and the full exact Einstein field equations with sources, plus the algebraic Bianchi identities, which are cast as the source-free equations for the gravitational field. New results within each approach are unveiled. The well known analogy between linearized gravity and electromagnetism in Lorentz frames is obtained as a limiting case of the exact ones. The formal analogies between the Maxwell and Weyl tensors are also discussed, and, together with insight from the other approaches, used to physically interpret gravitational radiation. The precise conditions under which a similarity between gravity and electromagnetism occurs are discussed, and we conclude by summarizing the main outcome of each approach.Comment: 60 pages, 2 figures. Improved version (compared to v2) with some re-write, notation improvements and a new figure that match the published version; expanded compared to the published version to include Secs. 2.3 and

    Nucleolus: the fascinating nuclear body

    Get PDF
    Nucleoli are the prominent contrasted structures of the cell nucleus. In the nucleolus, ribosomal RNAs are synthesized, processed and assembled with ribosomal proteins. RNA polymerase I synthesizes the ribosomal RNAs and this activity is cell cycle regulated. The nucleolus reveals the functional organization of the nucleus in which the compartmentation of the different steps of ribosome biogenesis is observed whereas the nucleolar machineries are in permanent exchange with the nucleoplasm and other nuclear bodies. After mitosis, nucleolar assembly is a time and space regulated process controlled by the cell cycle. In addition, by generating a large volume in the nucleus with apparently no RNA polymerase II activity, the nucleolus creates a domain of retention/sequestration of molecules normally active outside the nucleolus. Viruses interact with the nucleolus and recruit nucleolar proteins to facilitate virus replication. The nucleolus is also a sensor of stress due to the redistribution of the ribosomal proteins in the nucleoplasm by nucleolus disruption. The nucleolus plays several crucial functions in the nucleus: in addition to its function as ribosome factory of the cells it is a multifunctional nuclear domain, and nucleolar activity is linked with several pathologies. Perspectives on the evolution of this research area are proposed

    "The End of Immortality!" Eternal Life and the Makropulos Debate

    Get PDF
    Responding to a well-known essay by Bernard Williams, philosophers (and a few theologians) have engaged in what I call “the Makropulos debate,” a debate over whether immortality—“living forever”—would be desirable for beings like us. Lacking a firm conceptual grounding in the religious contexts from which terms such as “immortality” and “eternal life” gain much of their sense, the debate has consisted chiefly in a battle of speculative fantasies. Having presented my four main reasons for this assessment, I examine an alternative and neglected conception, the idea of eternal life as a present possession, derived in large part from Johannine Christianity. Without claiming to argue for the truth of this conception, I present its investigation as exemplifying a conceptually fruitful direction of inquiry into immortality or eternal life, one which takes seriously the religious and ethical surroundings of these concepts

    Behavioral Assessment of Alzheimer’s Transgenic Mice Following Long-Term A\u3cem\u3eβ\u3c/em\u3e Vaccination: Task Specificity and Correlations with Extent of A\u3cem\u3eβ \u3c/em\u3e Deposition and Spatial Memory

    No full text
    Long-term vaccinations with human β-amyloid peptide 1-42 (Aβ1-42) have recently been shown to prevent or markedly reduce Aβ deposition in the PDAPP transgenic model of Alzheimer\u27s disease (AD). Using a similar protocol to vaccinate 7.5-month-old APP (Tg2576) and APP+PS1 transgenic mice over an 8-month period, we previously reported modest reductions in brain Aβ deposition at 16 months. In these same mice, Aβ vaccinations had no deleterious behavioral effects and, in fact, benefited the mice by providing partial protection from age-related deficits in spatial working memory in the radial arm water maze task (RAWM) at 15.5 months. By contrast, control-vaccinated transgenic mice exhibited impaired performance throughout the entire RAWM test period at 15.5 months. The present study expands on our initial report by presenting additional behavioral results following long-term Aβ vaccination, as well as correlational analyses between cognitive performance and Aβ deposition in vaccinated animals. We report that 8 months of Aβ vaccinations did not reverse an early-onset balance beam impairment in transgenic mice. Additionally, in Y-maze testing at 16 months, all mice showed comparable spontaneous alternation irrespective of genotype or vaccination status. Strong correlations were nonetheless present between RAWM performance and extent of compact Aβ deposition in both the hippocampus and the frontal cortex of vaccinated APP+PS1 mice. Our results suggest that the behavioral protection of long-term Aβ vaccinations is task specific, with preservation of hippocampal-associated working memory tasks most likely to occur. In view of the early short-term memory deficits exhibited by AD patients, Aβ vaccination of presymptomatic AD patients could be an effective therapeutic to protect against such cognitive impairments

    Correlation between Working Memory Deficits and Cortical AĂź Deposition in Transgenic APP+PS1 Mice

    No full text
    Doubly transgenic mAPP+mPS1 mice (15–16 months) had impaired cognitive function in a spatial learning and memory task that combined features of a water maze and a radial arm maze. Nontransgenic mice learned a new platform location each day during 4 consecutive acquisition trials, and exhibited memory for this location in a retention trial administered 30 min later. In contrast, transgenic mice were, on average, unable to improve their performance in finding the hidden platform over trials. The cognitive performance of individual mice within the transgenic group were inversely related to the amount of Aβdeposited in the frontal cortex and hippocampus. These findings imply that mAPP+mPS1 transgenic mice develop deficits in cognitive ability as Aβ deposits increase. These data argue that radial arm water maze testing of doubly transgenic mice may be a useful behavioral endpoint in evaluating the functional consequences of potential AD therapies, especially those designed to reduce Aβ load

    Number of Aβ Inoculations in APP+PS1 Transgenic Mice Influences Antibody Titers, Microglial Activation, and Congophilic Plaque Levels

    No full text
    There have been several reports on the use of β-amyloid (Aβ ) vaccination in different mouse models of Alzheimer\u27s disease (AD) and its effects on pathology and cognitive function. In this report, the histopathologic findings in the APP+PS1 doubly transgenic mouse were compared after three, five, or nine Aβ inoculations. The number of inoculations influenced the effects of vaccination on Congo red levels, microglia activation, and anti-Aβ antibody titers. After three inoculations, the antibody titer of transgenic mice was substantially lower than that found in nontransgenic animals. However, after nine inoculations, the levels were considerably higher in both genotypes and no longer distinguishable statistically. The number of inoculations influenced CD45 expression, an indicator of microglial activation. There was an initial upregulation, which was significant after five inoculations, but by nine inoculations, the extent of microglial activation was equivalent to that in mice given control vaccinations. Along with this increased CD45 expression, there was a correlative reduction in staining by Congo red, which stains compact plaques. When data from the mice from all groups were combined, there was a significant correlation between activation of microglia and Congo red levels, suggesting that microglia play a role in the clearance of compact plaque
    corecore