519 research outputs found
Optically induced forces and torques:Interactions between nanoparticles in a laser beam
Distinctive optical forces and torques arise between nanoparticles irradiated by intense laser radiation. These forces, associated with a pairwise process of stimulated scattering, prove to enable the possibility of producing significant modifications to both the form and magnitude of interparticle forces, with additional contributions arising in the case of dipolar materials. Moreover, such forces have the capacity to generate unusual patterns of nanoscale response, entirely controlled by the input beam characteristics- principally the optical frequency, intensity, and polarization. Based on quantum electrodynamical theory, a general result is secured for the laser-induced force under arbitrary conditions, incorporating both static and dynamic coupling mechanisms. Specific features of the results are identified for pairs of particles with prolate cylindrical symmetry, e.g., carbon nanotubes, where it is shown that the laser-induced forces and torques are sensitive functions of the pair spacing and orientation, and the laser beam geometry; significantly, they can be either repulsive or attractive according to conditions. For nanoparticles trapped in a Laguerre-Gaussian laser beam the results also reveal additional and highly distinctive torques that suggest further possibilities for nanomanipulation with light. The paper concludes with a discussion on several potential applications of such forces. © 2005 The American Physical Society
Metagenomic characterisation of the gut microbiome and effect of complementary feeding on bifidobacterium spp. in Australian infants
Complementary feeding induces dramatic ecological shifts in the infant gut microbiota toward more diverse compositions and functional metabolic capacities, with potential implications for immune and metabolic health. The aim of this study was to examine whether the age at which solid foods are introduced differentially affects the microbiota in predominantly breastfed infants compared with predominantly formula-fed infants. We performed whole-genome shotgun metagenomic sequencing of infant stool samples from a cohort of six-month-old Australian infants enrolled in a nested study within the ORIGINS Project longitudinal birth cohort. Infants born preterm or those who had been administered antibiotics since birth were excluded. The taxonomic composition was highly variable among individuals at this age. Predominantly formula-fed infants exhibited a higher microbiome diversity than predominantly breastfed infants. Among the predominantly breastfed infants, the introduction of solid foods prior to five months of age was associated with higher alpha diversity than solid food introduction after six months of age, primarily due to the loss of Bifidobacterium infantis. In contrast, the age at which solid food was introduced was not associated with the overall change in diversity among predominantly formula-fed infants but was associated with compositional changes in Escherichia abundance. Examining the functional capacity of the microbiota in relation to these changes, we found that the introduction of solid foods after six months of age was associated with elevated one-carbon compound metabolic pathways in both breastfed and formula-fed infants, although the specific metabolic sub-pathways differed, likely reflecting different taxonomic compositions. Our findings suggest that the age of commencement of solid foods influences the gut microbiota composition differently in predominantly breastfed infants than in predominantly formula-fed infants
Gene-Expression Signatures Can Distinguish Gastric Cancer Grades and Stages
Microarray gene-expression data of 54 paired gastric cancer and adjacent noncancerous gastric tissues were analyzed, with the aim to establish gene signatures for cancer grades (well-, moderately-, poorly- or un-differentiated) and stages (I, II, III and IV), which have been determined by pathologists. Our statistical analysis led to the identification of a number of gene combinations whose expression patterns serve well as signatures of different grades and different stages of gastric cancer. A 19-gene signature was found to have discerning power between high- and low-grade gastric cancers in general, with overall classification accuracy at 79.6%. An expanded 198-gene panel allows the stratification of cancers into four grades and control, giving rise to an overall classification agreement of 74.2% between each grade designated by the pathologists and our prediction. Two signatures for cancer staging, consisting of 10 genes and 9 genes, respectively, provide high classification accuracies at 90.0% and 84.0%, among early-, advanced-stage cancer and control. Functional and pathway analyses on these signature genes reveal the significant relevance of the derived signatures to cancer grades and progression. To the best of our knowledge, this represents the first study on identification of genes whose expression patterns can serve as markers for cancer grades and stages
The Toxicity of a Mutant Prion Protein Is Cell-Autonomous, and Can Be Suppressed by Wild-Type Prion Protein on Adjacent Cells
Insight into the normal function of PrPC, and how it can be subverted to produce neurotoxic effects, is provided by PrP molecules carrying deletions encompassing the conserved central region. The most neurotoxic of these mutants, Δ105–125 (called ΔCR), produces a spontaneous neurodegenerative illness when expressed in transgenic mice, and this phenotype can be dose-dependently suppressed by co-expression of wild-type PrP. Whether the toxic activity of ΔCR PrP and the protective activity or wild-type PrP are cell-autonomous, or can be exerted on neighboring cells, is unknown. To investigate this question, we have utilized co-cultures of differentiated neural stem cells derived from mice expressing ΔCR or wild-type PrP. Cells from the two kinds of mice, which are marked by the presence or absence of GFP, are differentiated together to yield neurons, astrocytes, and oligodendrocytes. As a surrogate read-out of ΔCR PrP toxicity, we assayed sensitivity of the cells to the cationic antibiotic, Zeocin. In a previous study, we reported that cells expressing ΔCR PrP are hypersensitive to the toxic effects of several cationic antibiotics, an effect that is suppressed by co-expression of wild type PrP, similar to the rescue of the neurodegenerative phenotype observed in transgenic mice. Using this system, we find that while ΔCR-dependent toxicity is cell-autonomous, the rescuing activity of wild-type PrP can be exerted in trans from nearby cells. These results provide important insights into how ΔCR PrP subverts a normal physiological function of PrPC, and the cellular mechanisms underlying the rescuing process
Using Routinely Collected Administrative Data in Public Health Research: Geocoding Alcohol Outlet Data
We describe our process of geocoding alcohol outlets to create a national longitudinal exposure dataset for Wales, United Kingdom from 2006 to 2011. We investigated variation in the availability of data items and the quality of alcohol outlet addresses held within unitary authorities. We used a standard geocoding method augmented with a manual matching procedure to achieve a fully spatially referenced dataset. We found higher quality addresses are held for outlets based in urban areas, resulting in the automatic geocoding of 68 % of urban outlets, compared to 48 % in rural areas. Missing postcodes and a lack of address structure contributed to a lower geocoding proportion. An urban rural bias was removed with the development of a manual matching procedure. Only one-half of the unitary authorities provided data on on/off sales and opening times, which are important availability factors. The resulting outlet dataset is suitable for contributing to the evidence-base of alcohol availability and alcohol-related harm. Local government should be encouraged to use standardised data fields, including addresses, to enable accurate geocoding of alcohol outlets and facilitate research that aims to prevent alcohol-related harm. Standardising data collection would enable efficient secondary data reuse using record linkage techniques, allowing the retrospective creation and evaluation of population-based natural experiments to provide evidence for policy and practice
High resolution human leukocyte antigen (HLA) class I and class II allele typing in Mexican mestizo women with sporadic breast cancer: case-control study
<p>Abstract</p> <p>Background</p> <p>The development of breast cancer is multifactorial. Hormonal, environmental factors and genetic predisposition, among others, could interact in the presentation of breast carcinoma. Human leukocyte antigen (HLA) alleles play an important role in immunity (cellular immunity) and may be important genetic traits. HLAAllele-specific interaction has not been well established. Recently, several studies had been conducted in order to do so, but the results are controversial and in some instances contradictory.</p> <p>Methods</p> <p>We designed a case-control study to quantify the association of HLA class I and II genes and breast cancer. HLA typing was performed by high resolution sequence-specific oligotyping after DNA amplification (PCR-SSOP) of 100 breast cancer Mexican mestizo patients and 99 matched healthy controls.</p> <p>Results</p> <p>HLA-A frequencies that we were able to observe that there was no difference between both groups from the statistical viewpoint. HLA-B*1501 was found three times more common in the case group (OR, 3.714; <it>p </it>= 0.031). HLA-Cw is not a marker neither for risk, nor protection for the disease, because we did not find significant statistical differences between the two groups. DRB1*1301, which is expressed in seven cases and in only one control, observing an risk increase of up to seven times and DRB1*1602, which behaves similarly in being present solely in the cases (OR, 16.701; 95% CI, 0.947 – 294.670). DQ*0301-allele expression, which is much more common in the control group and could be protective for the presentation of the disease (OR, 0.078; 95% CI, 0.027–0.223, <it>p </it>= 0.00001).</p> <p>Conclusion</p> <p>Our results reveal the role of the MHC genes in the pathophysiology of breast cancer, suggesting that in the development of breast cancer exists a disorder of immune regulation. The triggering factor seems to be restricted to certain ethnic groups and certain geographical regions since the relevant MHC alleles are highly diverse. This is the first study in Mexican population where high resolutions HLA typing has been performed in order to try to establish an association with malignancy.</p
Polydimethylsiloxane (PDMS) composites for optical ultrasound generation and multi-modality imaging
Polydimethylsiloxane (PDMS) is widely used in biomedical science and can form composites that have broad applicability. One promising application where PDMS composites offer several advantages is optical ultrasound generation via the photoacoustic effect. Here, methods to create these PDMS composites are reviewed and classified. It is highlighted how the composites can be applied to a range of substrates, from micrometer‐scale, temperature‐sensitive optical fibers to centimeter‐scale curved and planar surfaces. The resulting composites have enabled all‐optical ultrasound imaging of biological tissues both ex vivo and in vivo, with high spatial resolution and with clinically relevant contrast. In addition, the first 3D all‐optical pulse‐echo ultrasound imaging of ex vivo human tissue, using a PDMS‐multiwalled carbon nanotube composite and a fiber‐optic ultrasound receiver, is presented. Gold nanoparticle‐PDMS and crystal violet‐PDMS composites with prominent absorption at one wavelength range for pulse‐echo ultrasound imaging and transmission at a second wavelength range for photoacoustic imaging are also presented. Using these devices, images of diseased human vascular tissue with both structural and molecular contrast are obtained. With a broader perspective, literature on recent advances in PDMS microfabrication from different fields is highlighted, and methods for incorporating them into new generations of optical ultrasound generators are suggested
- …