35 research outputs found

    RANDOM WALK APPROACH FOR SIMULATION OF PARTICLE DEPOSITION FROM TURBULENT FLOWS

    Get PDF
    This study deals with a random walk simulation of particle transport and deposition from a stationary, isotropic turbulent flow: This is an inplernentation of the well-known Lagrangian approach. which treats the disperse phase as many particles. The trajectory of each particle is calculated according to the equations of the mottion assuming a discrete eddy-field. The ensemble-ayeraged quantities describe the behavior of the particle-fluid system, and these have been used to validate numerical solutions of a kinetic (probability density function transport) equation which models the same system. In this work we have only considered relatively large particles: particle-particle interactions and the influence of the particle phase on fluid phase have been neglected

    A one-dimensional mechanistic model for tracking unsteady slug flow.

    Get PDF
    A novel one-dimensional slug tracking mechanistic model for unsteady, upward gas-liquid slug flow in inclined pipes is presented. The model stems from the first principles of mass and momentum conservation applied to a slug unit cell consisting of a slug body of liquid and a region of stratified flow containing an elongated bubble and a liquid film. The slug body front and rear are treated as surfaces of discontinuity where mass and momentum balances or "jump laws"are prescribed. The former is commonly applied in mechanistic models for slug flow, whereas the latter is typically overlooked, thereby leading to the assumption of a continuous pressure profile at these points or to the adoption of a pressure drop due to the fluid acceleration on a heuristic basis. Our analysis shows that this pressure change arises formally from the momentum jump law at the slug body front. The flow is assumed to be isothermal, the gas is compressible, the pressure drop in the elongated bubble region is accounted for, the film thickness is considered uniform, and weight effects in the pressure from the interface level are included. Besides specifying momentum jump laws at both borders of the slug body, another novel feature of the present model is that we avoid adopting the quasi-steady approximation for the elongated bubble-liquid film region, and thus the unsteady terms in the mass and momentum balances are kept. The present model requires empirical correlations for the slug body length and the elongated bubble nose velocity. The non-linear equations are discretized and solved simultaneously for all the slug unit cells filling the pipe. Timespace variation of the slug body and film lengths, liquid holdup and void fraction, and pressures, among other quantities, can be predicted, and model performance is evaluated by comparing with data in the literature

    Prediction of unsteady slug flow in a long curved inclined riser with a slug tracking model

    Get PDF
    An improved one-dimensional mechanistic model is presented for the prediction of unsteady gas-liquid slug flows in inclined curved pipes, using the slug tracking approach. The equations for mass and momentum conservation are applied to the slug body, liquid film, and elongated bubble regions constituting a slug unit cell. The proposed model can be applied to horizontal or inclined upward flows. Statements of mass conservation result in axial changes of the liquid and gas velocities in the liquid film and elongated bubble. The slug initiation at the inlet is modelled as a random process with slug length variations. Closure relationships for the bubble nose velocity, modified by the wake effect, and the slug frequency for slug initiation are employed. The discretized governing equations are solved fully implicitly, introducing numerical treatments associated with the outlet boundary conditions and the merging of slug units. Of practical interest is an upward gas-liquid slug flow in a catenary riser with a high aspect ratio (length over diameter) being an order of a thousand representing an offshore subsea pipe for the oil and gas production. By considering the pipe initially fully filled with the traveling liquid, the dynamic scenario of the pipe transporting successive slug units is simulated, capturing the continuing evolution of slug flow patterns along the pipe exhibiting the disappearances of liquid slugs due to the bubble coalescences. Spatio-temporal variations of the liquid holdup, the pressure and its gradient, the film and slug lengths, the slug frequency, the velocities of the slug front, bubble nose, liquid in the slug body and film, and of the gas in the elongated bubble are evaluated. The backward flow occurrence in the film zone near the outlet is also predicted due to the pipe inclination. Parametric investigations are performed by specifying the superficial liquid and gas velocities, and comparing the cases of catenary pipes (with variable inclinations) versus inclined and horizontal straight pipes (with fixed inclinations). Results highlight the important effect of gas-to-oil superficial velocity ratio (GOR) in combination with the pipe inclination and curvature effects. Fluctuations of slug flow properties appear to be considerably amplified and more intermittent when increasing the GOR. This observation is important towards regulating the practical flow rates for subsea oil and gas productions as well as designing flexible pipes subject to slug flow-induced vibrations

    Individual based model links thermodynamics, chemical speciation and environmental conditions to microbial growth

    Get PDF
    Individual based Models (IbM) must transition from research tools to engineering tools. To make the transition we must aspire to develop large, three dimensional and physically and biologically credible models. Biological credibility can be promoted by grounding, as far as possible, the biology in thermodynamics. Thermodynamic principles are known to have predictive power in microbial ecology. However, this in turn requires a model that incorporates pH and chemical speciation. Physical credibility implies plausible mechanics and a connection with the wider environment. Here, we propose a step toward that ideal by presenting an individual based model connecting thermodynamics, pH and chemical speciation and environmental conditions to microbial growth for 5·105 individuals. We have showcased the model in two scenarios: a two functional group nitrification model and a three functional group anaerobic community. In the former, pH and connection to the environment had an important effect on the outcomes simulated. Whilst in the latter pH was less important but the spatial arrangements and community productivity (that is, methane production) were highly dependent on thermodynamic and reactor coupling. We conclude that if IbM are to attain their potential as tools to evaluate the emergent properties of engineered biological systems it will be necessary to combine the chemical, physical, mechanical and biological along the lines we have proposed. We have still fallen short of our ideals because we cannot (yet) calculate specific uptake rates and must develop the capacity for longer runs in larger models. However, we believe such advances are attainable. Ideally in a common, fast and modular platform. For future innovations in IbM will only be of use if they can be coupled with all the previous advances

    Effects of Anacetrapib in Patients with Atherosclerotic Vascular Disease

    Get PDF
    BACKGROUND: Patients with atherosclerotic vascular disease remain at high risk for cardiovascular events despite effective statin-based treatment of low-density lipoprotein (LDL) cholesterol levels. The inhibition of cholesteryl ester transfer protein (CETP) by anacetrapib reduces LDL cholesterol levels and increases high-density lipoprotein (HDL) cholesterol levels. However, trials of other CETP inhibitors have shown neutral or adverse effects on cardiovascular outcomes. METHODS: We conducted a randomized, double-blind, placebo-controlled trial involving 30,449 adults with atherosclerotic vascular disease who were receiving intensive atorvastatin therapy and who had a mean LDL cholesterol level of 61 mg per deciliter (1.58 mmol per liter), a mean non-HDL cholesterol level of 92 mg per deciliter (2.38 mmol per liter), and a mean HDL cholesterol level of 40 mg per deciliter (1.03 mmol per liter). The patients were assigned to receive either 100 mg of anacetrapib once daily (15,225 patients) or matching placebo (15,224 patients). The primary outcome was the first major coronary event, a composite of coronary death, myocardial infarction, or coronary revascularization. RESULTS: During the median follow-up period of 4.1 years, the primary outcome occurred in significantly fewer patients in the anacetrapib group than in the placebo group (1640 of 15,225 patients [10.8%] vs. 1803 of 15,224 patients [11.8%]; rate ratio, 0.91; 95% confidence interval, 0.85 to 0.97; P=0.004). The relative difference in risk was similar across multiple prespecified subgroups. At the trial midpoint, the mean level of HDL cholesterol was higher by 43 mg per deciliter (1.12 mmol per liter) in the anacetrapib group than in the placebo group (a relative difference of 104%), and the mean level of non-HDL cholesterol was lower by 17 mg per deciliter (0.44 mmol per liter), a relative difference of -18%. There were no significant between-group differences in the risk of death, cancer, or other serious adverse events. CONCLUSIONS: Among patients with atherosclerotic vascular disease who were receiving intensive statin therapy, the use of anacetrapib resulted in a lower incidence of major coronary events than the use of placebo. (Funded by Merck and others; Current Controlled Trials number, ISRCTN48678192 ; ClinicalTrials.gov number, NCT01252953 ; and EudraCT number, 2010-023467-18 .)

    Relations, commitment and satisfaction in agency workers and permanent workers

    Get PDF
    Purpose – To investigate the level of organizational commitment in agency workers compared with permanent workers by taking into account relations between the two groups. Design/methodology/approach – A mixed methods design was employed comprising of a quantitative survey of 157 call centre workers followed by 29 qualitative interviews with permanent workers, agency workers and employers. Findings – Agency workers had a significantly lower level of organizational commitment compared with permanent workers once the relation between agency and permanent workers was controlled. Significant correlations were found within the sample between organizational commitment, being valued and job satisfaction further supported by a hierarchical multiple linear regression. Research limitations/implications – As with all cross‐sectional research causality cannot be confirmed and difficulty accessing call centre workers led to a restricted sample size. The measurement of worker relations needs developing. Further research is proposed to address these limitations and extend the findings. Practical implications – The implication for human resource management is that employers must be aware of the possible adverse influence that agency workers may have on permanent workers and as such try to incorporate agency workers within the organization to support their commitment. Originality/value – Previous studies have found inconsistent variations in the relative organizational commitment of permanent and temporary employees; a counter‐intuitive finding given the precarious employment contract held by temporary workers. This study casts light on these results by controlling for the relation between agency workers and permanent workers
    corecore