5,751 research outputs found

    A system-approach to the elastohydrodynamic lubrication point-contact problem

    Get PDF
    The classical EHL (elastohydrodynamic lubrication) point contact problem is solved using a new system-approach, similar to that introduced by Houpert and Hamrock for the line-contact problem. Introducing a body-fitted coordinate system, the troublesome free-boundary is transformed to a fixed domain. The Newton-Raphson method can then be used to determine the pressure distribution and the cavitation boundary subject to the Reynolds boundary condition. This method provides an efficient and rigorous way of solving the EHL point contact problem with the aid of a supercomputer and a promising method to deal with the transient EHL point contact problem. A typical pressure distribution and film thickness profile are presented and the minimum film thicknesses are compared with the solution of Hamrock and Dowson. The details of the cavitation boundaries for various operating parameters are discussed

    Molecular lesions associated with white gene mutations induced by I-R hybrid dysgenesis in Drosophila melanogaster

    Get PDF
    We have identified molecular lesions associated with six mutations, w(IR2) and w(IR4-8), of the white gene of Drosophila melanogaster. These mutations arose in flies subject to I-R hybrid dysgenesis. Four of the mutations give rise to coloured eyes and are associated with insertions of 5.4-kb elements indistinguishable from the I factor controlling I-R dysgenesis. The insertion associated with w(IR4) is at a site which, within the resolution of these experiments, is identical to that of two previously studied I factors. This appears to be a hot-spot for I factor insertion. We have compared the sites of these insertions with sequences complementary to white gene mRNA identified by Pirrotta and Bröckl. The hot-spot is in the fourth intron. The insertion carried by w(IR5) is either within, or just beyond, the last exon. The insertion carried by w(IR6) is near the junction of the first exon and first intron. The w(IR2) mutation is a derivative of w(1). It contains an insertion of I factor DNA within, or immediately adjacent to, the F-like element associated with w(1), and results in restoration of some eye colour. This insertion is just upstream of the start of the white mRNA. Mutations w(IR7) and w(IR8) are deletions removing mRNA coding sequences. Both determine a bleached white phenotype

    A noncontact measurement technique for the density and thermal expansion coefficient of solid and liquid materials

    Get PDF
    A noncontact measurement technique for the density and the thermal expansion coefficient of refractory materials in their molten as well as solid phases is presented. This technique is based on the video image processing of a levitated sample. Experiments were performed using the high-temperature electrostatic levitator (HTESL) at the Jet Propulsion Laboratory in which 2–3 mm diam samples can be levitated, melted, and radiatively cooled in vacuum. Due to the axisymmetric nature of the molten samples when levitated in the HTESL, a rather simple digital image analysis can be employed to accurately measure the volumetric change as a function of temperature. Density and the thermal expansion coefficient measurements were made on a pure nickel sample to test the accuracy of the technique in the temperature range of 1045–1565 °C. The result for the liquid phase density can be expressed by rho=8.848+(6.730×10^−4)×T (°C) g/cm^3 within 0.8% accuracy, and the corresponding thermal expansion coefficient can be expressed by beta=(9.419×10^−5) −(7.165×10^−9)×T (°C) K^−1 within 0.2% accuracy

    Nanofriction Visualized in Space and Time by 4D Electron Microscopy

    Get PDF
    In this letter, we report a novel method of visualizing nanoscale friction in space and time using ultrafast electron microscopy (UEM). The methodology is demonstrated for a nanoscale movement of a single crystal beam on a thin amorphous membrane of silicon nitride. The movement results from the elongation of the crystal beam, which is initiated by a laser (clocking) pulse, and we examined two types of beams: those that are free of friction and the others which are fixed on the substrate. From observations of image change with time we are able to decipher the nature of microscopic friction at the solid−solid interface: smooth-sliding and periodic slip-stick friction. At the molecular and nanoscale level, and when a force parallel to the surface (expansion of the beam) is applied, the force of gravity as a (perpendicular) load cannot explain the observed friction. An additional effective load being 6 orders of magnitude larger than that due to gravity is attributed to Coulombic/van der Waals adhesion at the interface. For the case under study, metal−organic crystals, the gravitational force is on the order of piconewtons whereas the static friction force is 0.5 μN and dynamic friction is 0.4 μN; typical beam expansions are 50 nm/nJ for the free beam and 10 nm/nJ for the fixed beam. The method reported here should have applications for other materials, and for elucidating the origin of periodic and chaotic friction and their relevance to the efficacy of nano(micro)-scale devices

    Irreversible Chemical Reactions Visualized in Space and Time with 4D Electron Microscopy

    Get PDF
    We report direct visualization of irreversible chemical reactions in space and time with 4D electron microscopy. Specifically, transient structures are imaged following electron transfer in copper-tetracyanoquinodimethane [Cu(TCNQ)] crystals, and the oxidation/reduction process, which is irreversible, is elucidated using the single-shot operation mode of the microscope. We observed the fast, initial structural rearrangement due to Cu^+ reduction and the slower growth of metallic Cu^0 nanocrystals (Ostwald ripening) following initiation of the reaction with a pulse of visible light. The mechanism involves electron transfer from TCNQ anion-radical to Cu^+, morphological changes, and thermally driven growth of discrete Cu^0 nanocrystals embedded in an amorphous carbon skeleton of TCNQ. This in situ visualization of structures during reactions should be extendable to other classes of reactive systems

    UBVI CCD Photometry of the Old Open Cluster NGC 1193

    Full text link
    We present UBVI photometry of the old open cluster NGC 1193. Color-magnitude diagrams (CMDs) of this cluster show a well defined main sequence and a sparse red giant branch. For the inner region of r<50 arcsec, three blue straggler candidates are newly found in addition to the objects Kaluzny (1988) already found. The color-color diagrams show that the reddening value toward NGC 1193 is E(B-V) =0.19 +/- 0.04. From the ultraviolet excess measurement, we derived the metallicity to be [Fe/H]=-0.45 +/- 0.12. A distance modulus of (m-M)_0 =13.3 +/- 0.15 is obtained from zero age main sequence fitting with the empirically calibrated Hyades isochrone of Pinsonneault et al. (2004). CMD comparison with the Padova isochrones by Bertelli et al. (1994) gives an age of log t =9.7 +/- 0.1.Comment: JKAS (J. of the Korean Astron. Soc.) in press (Dec 2008 issue

    On the numerical solution of the dynamically loaded hydrodynamic lubrication of the point contact problem

    Get PDF
    The transient analysis of hydrodynamic lubrication of a point-contact is presented. A body-fitted coordinate system is introduced to transform the physical domain to a rectangular computational domain, enabling the use of the Newton-Raphson method for determining pressures and locating the cavitation boundary, where the Reynolds boundary condition is specified. In order to obtain the transient solution, an explicit Euler method is used to effect a time march. The transient dynamic load is a sinusoidal function of time with frequency, fractional loading, and mean load as parameters. Results include the variation of the minimum film thickness and phase-lag with time as functions of excitation frequency. The results are compared with the analytic solution to the transient step bearing problem with the same dynamic loading function. The similarities of the results suggest an approximate model of the point contact minimum film thickness solution

    Flux reversal in a two-state symmetric optical thermal ratchet

    Full text link
    A Brownian particle's random motions can be rectified by a periodic potential energy landscape that alternates between two states, even if both states are spatially symmetric. If the two states differ only by a discrete translation, the direction of the ratchet-driven current can be reversed by changing their relative durations. We experimentally demonstrate flux reversal in a symmetric two-state ratchet by tracking the motions of colloidal spheres moving through large arrays of discrete potential energy wells created with dynamic holographic optical tweezers. The model's simplicity and high degree of symmetry suggest possible applications in molecular-scale motors.Comment: 4 pages, 5 figures, accepted for publication in Physical Review E, Rapid Communication
    • …
    corecore