40,349 research outputs found
Improvement and extension of a radar forest backscattering model
Radar modeling of mangal forest stands, in the Sundarbans area of Southern Bangladesh, was developed. The modeling employs radar system parameters such as wavelength, polarization, and incidence angle, with forest data on tree height, spacing, biomass, species combinations, and water content (including slightly conductive water) both in leaves and trunks of the mangal. For Sundri and Gewa tropical mangal forests, five model components are proposed, which are required to explain the contributions of various forest species combinations in the attenuation and scattering of mangal vegetated nonflooded or flooded surfaces. Statistical data of simulated images (HH components only) were compared with those of SIR-B images both to refine the modeling procedures and to appropriately characterize the model output. The possibility of delineation of flooded or non-flooded boundaries is discussed
Differential in vitro infection of neural cells by astroviruses
Encephalitis remains a diagnostic conundrum in humans as over 50% of cases are managed without the identification of an etiology. Astroviruses have been detected from the central nervous system of mammals in association with disease, suggesting that this family of RNA viruses could be responsible for cases of some neurological diseases that are currently without an ascribed etiology. However, there are significant barriers to understanding astrovirus infection as the capacity of these viruses to replicate in nervous system cells in vitro has not been determined. We describe primary and immortalized cultured cells of the nervous system that support infection by astroviruses. These results further corroborate the role of astroviruses in causing neurological diseases and will serve as an essential model to interrogate the neuropathogenesis of astrovirus infection.Recent advances in unbiased pathogen discovery have implicated astroviruses as pathogens of the central nervous system (CNS) of mammals, including humans. However, the capacity of astroviruses to be cultured in CNS-derived cells in vitro has not been reported to date. Both astrovirus VA1/HMO-C (VA1; mamastrovirus 9) and classic human astrovirus 4 (HAstV4; mamastrovirus 1) have been previously detected from cases of human encephalitis. We tested the ability of primary human neurons, primary human astrocytes, and other immortalized human nervous system cell lines (SK-N-SH, U87 MG, and SW-1088) to support infection and replication of these two astrovirus genotypes. Primary astrocytes and SK-N-SH cells supported the full viral life cycle of VA1 with a >100-fold increase in viral RNA levels during a multistep growth curve, detection of viral capsid, and a >100-fold increase in viral titer. Primary astrocytes were permissive with respect to HAstV4 infection and replication but did not yield infectious virus, suggesting abortive infection. Similarly, abortive infection of VA1 was observed in SW-1088 and U87 MG cells. Elevated expression of the chemokine CXCL10 was detected in VA1-infected primary astrocytes and SK-N-SH cells, suggesting that VA1 infection can induce a proinflammatory host response. These findings establish an in vitro cell culture model that is essential for investigation of the basic biology of astroviruses and their neuropathogenic potential
3D Projection Sideband Cooling
We demonstrate 3D microwave projection sideband cooling of trapped, neutral
atoms. The technique employs state-dependent potentials that enable microwave
photons to drive vibration-number reducing transitions. The particular cooling
sequence we employ uses minimal spontaneous emission, and works even for
relatively weakly bound atoms. We cool 76% of atoms to their 3D vibrational
ground states in a site-resolvable 3D optical lattice.Comment: 5 pages, 4 figures, Supplemental Material included. To appear in
Physical Review Letter
Recommended from our members
Integrated Dynamic Facade Control with an Agent-based Architecture for Commercial Buildings
Dynamic façades have significant technical potential to minimize heating, cooling, and lighting energy use and peak electric demand in the perimeter zone of commercial buildings, but the performance of these systems is reliant on being able to balance complex trade-offs between solar control, daylight admission, comfort, and view over the life of the installation. As the context for controllable energy-efficiency technologies grows more complex with the increased use of intermittent renewable energy resources on the grid, it has become increasingly important to look ahead towards more advanced approaches to integrated systems control in order to achieve optimum life-cycle performance at a lower cost. This study examines the feasibility of a model predictive control system for low-cost autonomous dynamic façades. A system architecture designed around lightweight, simple agents is proposed. The architecture accommodates whole building and grid level demands through its modular, hierarchical approach. Automatically-generated models for computing window heat gains, daylight illuminance, and discomfort glare are described. The open source Modelica and JModelica software tools were used to determine the optimum state of control given inputs of window heat gains and lighting loads for a 24-hour optimization horizon. Penalty functions for glare and view/ daylight quality were implemented as constraints. The control system was tested on a low-power controller (1.4 GHz single core with 2 GB of RAM) to evaluate feasibility. The target platform is a low-cost ($35/unit) embedded controller with 1.2 GHz dual-core cpu and 1 GB of RAM. Configuration and commissioning of the curtainwall unit was designed to be largely plug and play with minimal inputs required by the manufacturer through a web-based user interface. An example application was used to demonstrate optimal control of a three-zone electrochromic window for a south-facing zone. The overall approach was deemed to be promising. Further engineering is required to enable scalable, turnkey solutions
Quantum computing with nearest neighbor interactions and error rates over 1%
Large-scale quantum computation will only be achieved if experimentally
implementable quantum error correction procedures are devised that can tolerate
experimentally achievable error rates. We describe a quantum error correction
procedure that requires only a 2-D square lattice of qubits that can interact
with their nearest neighbors, yet can tolerate quantum gate error rates over
1%. The precise maximum tolerable error rate depends on the error model, and we
calculate values in the range 1.1--1.4% for various physically reasonable
models. Even the lowest value represents the highest threshold error rate
calculated to date in a geometrically constrained setting, and a 50%
improvement over the previous record.Comment: 4 pages, 8 figure
A Bijection between Atomic Partitions and Unsplitable Partitions
In the study of the algebra of symmetric functions in
noncommutative variables, Bergeron and Zabrocki found a free generating set
consisting of power sum symmetric functions indexed by atomic partitions. On
the other hand, Bergeron, Reutenauer, Rosas, and Zabrocki studied another free
generating set of consisting of monomial symmetric functions
indexed by unsplitable partitions. Can and Sagan raised the question of finding
a bijection between atomic partitions and unsplitable partitions. In this
paper, we provide such a bijection.Comment: 6 page
- …