16,532 research outputs found
Flow Visualization Techniques for Flight Research
In-flight flow visualization techniques used at the Dryden Flight Research Facility of NASA Ames Research Center (Ames-Dryden) and its predecessor organizations are described. Results from flight tests which visualized surface flows using flow cones, tufts, oil flows, liquid crystals, sublimating chemicals, and emitted fluids have been obtained. Off-surface flow visualization of vortical flow has been obtained from natural condensation and two methods using smoke generator systems. Recent results from flight tests at NASA Langley Research Center using a propylene glycol smoker and an infrared imager are also included. Results from photo-chase aircraft, onboard and postflight photography are presented
Effects of Automation on Aircrew Workload and Situation Awareness in Tactical Airlift Missions
In tactical aviation, decision superiority brought upon by high situation awareness remains the arbiter of combat effectiveness. The advancement of sophisticated avionics and highly automated cockpits has allowed for the reduction of aircrew size, and in certain platforms, removal of the crew from the aircraft entirely. However, these developments have not reduced the complex and dynamic interaction between situation awareness and crew workload. While many predictive and experimental methods of evaluating workload exist, situation awareness can only be measured by conducting trials with human operators in a functional prototype. This thesis proposes an innovative methodology to predicatively determine situation awareness potential with discrete-event simulation software. This methodology measures situation awareness as both a function of task accomplishment and workload experienced. Utilizing two common but complex tactical scenarios, this method and existing workload measurement techniques can derive a direct comparison between a reduced-crew highly automated cockpit and a less automated legacy aircraft. Finally, conclusions regarding the effectiveness of replacing human operators with automation in tactical events can be made and tested in future experiments with actual aircraft and aircrews
What are the prospects for privatizing infrastructure? Lessons from U. S. roads and solid waste
Infrastructure (Economics) ; Roads
Full dimensional (15D) quantum-dynamical simulation of the protonated water-dimer I: Hamiltonian setup and analysis of the ground vibrational state
Quantum-dynamical full-dimensional (15D) calculations are reported for the
protonated water dimer (H5O2+) using the multiconfiguration time-dependent
Hartree (MCTDH) method. The dynamics is described by curvilinear coordinates.
The expression of the kinetic energy operator in this set of coordinates is
given and its derivation, following the polyspherical method, is discussed. The
PES employed is that of Huang et al. [JCP, 122, 044308, (2005)]. A scheme for
the representation of the potential energy surface (PES) is discussed which is
based on a high dimensional model representation scheme (cut-HDMR), but
modified to take advantage of the mode-combination representation of the
vibrational wavefunction used in MCTDH. The convergence of the PES expansion
used is quantified and evidence is provided that it correctly reproduces the
reference PES at least for the range of energies of interest. The reported zero
point energy of the system is converged with respect to the MCTDH expansion and
in excellent agreement (16.7 cm-1 below) with the diffusion Monte Carlo result
on the PES of Huang et al. The highly fluxional nature of the cation is
accounted for through use of curvilinear coordinates. The system is found to
interconvert between equivalent minima through wagging and internal rotation
motions already when in the ground vibrational-state, i.e., T=0. It is shown
that a converged quantum-dynamical description of such a flexible, multi-minima
system is possible.Comment: 46 pages, 5 figures, submitted to J. Chem. Phy
A Na I Absorption Map of the Small-Scale Structure in the Interstellar Gas Toward M15
Using the DensePak fiber optic array on the KPNO WIYN telescope, we have
obtained high S/N echelle spectra of the Na I D wavelength region toward the
central 27" x 43" of the globular cluster M15 at a spatial resolution of 4".
The spectra exhibit significant interstellar Na I absorption at LSR velocities
of +3 km/s (LISM component) and +68 km/s (IVC component). Both components vary
appreciably in strength on these scales. The derived Na I column densities
differ by a factor of 4 across the LISM absorption map and by a factor of 16
across the IVC map. Assuming distances of 500 pc and 1500 pc for the LISM and
IVC clouds, these maps show evidence of significant ISM structure down to the
minimum scales of 2000 AU and 6000 AU probed in these absorbers. The
smallest-scale N(Na I) variations observed in the M15 LISM and IVC maps are
typically comparable to or higher than the values found at similar scales in
previous studies of interstellar Na I structure toward binary stars. The
physical implications of the small and larger-scale Na I features observed in
the M15 maps are discussed in terms of variations in the H I column density as
well as in the Na ionization equilibrium.Comment: 11 pages, 3 figures, accepted for publication in ApJ Letter
Observations of Small Scale ISM Structure in Dense Atomic Gas
We present high resolution (R~170,000) Kitt Peak National Observatory Co'ude
Feed telescope observations of the interstellar KI 7698 angstrom line towards 5
multiple star systems with saturated NaI components. We compare the KI
absorption line profiles in each of the two (or three) lines of sight in these
systems, and find significant differences between the sight-lines in 3 out of
the 5 cases. We infer that the small scale structure traced by previous NaI
observations is also present in at least some of the components with saturated
NaI absorption lines, and thus the small scale structures traced by the neutral
species are occurring at some level in clouds of all column densities. We
discuss the implications of that conclusion and a potential explanation by
density inhomogeneities
Three Emission-Line Galaxies at z ~ 2.4
We present Keck near-infrared and WIYN (Wisconsin-Indiana-Yale NOAO) optical photometry of a sample of galaxies detected by near-infrared narrowband imaging in the fields of quasar metal absorption line systems at z ~ 2.4. Wide separations (0.6-1.6 h-1 Mpc) from the quasars indicate that they are not directly responsible for the absorption systems. From the color excess of the galaxies we derived line fluxes, star formation rates, and equivalent widths. The data are consistent with one source having an active nucleus and two sources containing regions of star formation. The blue (R-K) colors for the sources suggest relatively lower dust content. We discuss possible projects using current wide-field infrared instruments, which can cover an order of magnitude greater area with modest allocations of telescope time
- …