69 research outputs found

    Thermodynamics of oligosaccharide binding to a monoclonal antibody specific for a Salmonella O-antigen point to hydrophobic interactions in the binding site.

    Get PDF
    The thermodynamic characteristics of oligosaccharide binding to an antibody binding site that is dominated by aromatic amino acids suggest that the hydrophobic effect contributes substantially to complex formation as well as hydrogen bonding and van der Waals interactions. A detailed titration microcalorimetric study on the temperature dependence of the binding of a trisaccharide, representing the epitope of a Salmonella O-antigen, showed that its maximum binding to the monoclonal antibody Se155-4 occurs just below room temperature and both enthalpy and entropy changes are strongly dependent on temperature in a mutually compensating manner. The heat capacity change also shows an unusually strong temperature dependence being large and negative above room temperature and positive below. van't Hoff analysis of the temperature dependence of the binding constant yielded a biphasic curve with two apparent intrinsic enthalpy estimations (approximately -100 kJ mol-1 above 18 degrees C and approximately +100 kJ mol-1 below), each very different from the calorimetrically determined enthalpies (ranging from about -60 kJ mol-1 to -20 kJ mol-1). This was interpreted as being due to large enthalpy contributions from concomitant reactions, most notably changes in solvation. Linear plots, -delta H0 versus -T delta S0, observed for temperature-dependent measurements mirror the behavior seen for a series of functional group replacements, suggesting that the molecular and physical origin of these phenomena are closely related and linked to the role of water in complex formation. The thermodynamic results are compared to the mode of binding determined from a 2.05-A resolution structure of the Fab-oligosaccharide complex, and with literature data for the heat capacities of sugars in aqueous solution and for the thermodynamics of carbohydrate binding to transport proteins and lectins

    Determination of the Structure and Conformation of Bacterial Polysaccharides by Carbon 13 Nuclear Magnetic Resonance STUDIES ON THE GROUP-SPECIFIC ANTIGENS OF NEISSERIA MENINGITIDIS SEROGROUPS A AND X

    Get PDF
    Abstract The application of carbon 13 nuclear magnetic resonance to analysis of some phosphorylated acetamidohexose-containing meningococcal polysaccharides is described. A complete assignment of the spectra of both the serogroup A and X polysaccharides has been made. In addition the spectrum of a structurally related 1 →6-α-linked 2-acetamido-2-deoxy-d-glucose phosphate polysaccharide from Staphylococcus lactis NCTC 2102 has also been completely assigned. This has resulted in the structural elucidation of the serogroup X polysaccharide as a homopolymer of 2-acetamido-2-deoxy-d-glucopyranose, linked by 1→4-α-phosphodiester bonds. In addition, the O-acetyl substituents of the serogroup A polysaccharide have been located at C-3 of approximately 70% of the repeating units (1→6-α-linked 2-acetamido-2-deoxy-d-mannopyranose phosphate) of the homopolymer. Preliminary conformational information was also obtained from the large three-bond couplings between 31P and 13C (3J3131p-1313c), indicative of highly extended backbone formations

    Self-Adjuvanting Glycopeptide Conjugate Vaccine against Disseminated Candidiasis

    Get PDF
    Our research on pathogenesis of disseminated candidiasis led to the discovery that antibodies specific for Candida albicans cell surface β-1, 2–mannotriose [β-(Man)3] protect mice. A 14 mer peptide Fba, which derived from the N-terminal portion of the C. albicans cytosolic/cell surface protein fructose-bisphosphate aldolase, was used as the glycan carrier and resulted in a novel synthetic glycopeptide vaccine β-(Man)3-Fba. By a dendritic cell-based immunization approach, this conjugate induced protective antibody responses against both the glycan and peptide parts of the vaccine. In this report, we modified the β-(Man)3-Fba conjugate by coupling it to tetanus toxoid (TT) in order to improve immunogenicity and allow for use of an adjuvant suitable for human use. By new immunization procedures entirely compatible with human use, the modified β-(Man)3-Fba-TT was administered either alone or as a mixture made with alum or monophosphoryl lipid A (MPL) adjuvants and given to mice by a subcutaneous (s.c.) route. Mice vaccinated with or, surprisingly, without adjuvant responded well by making robust antibody responses. The immunized groups showed a high degree of protection against a lethal challenge with C. albicans as evidenced by increased survival times and reduced kidney fungal burden as compared to control groups that received only adjuvant or DPBS buffer prior to challenge. To confirm that induced antibodies were protective, sera from mice immunized against the β-(Man)3-Fba-TT conjugate transferred protection against disseminated candidiasis to naïve mice, whereas C. albicans-absorbed immune sera did not. Similar antibody responses and protection induced by the β-(Man)3-Fba-TT vaccine was observed in inbred BALB/c and outbred Swiss Webster mice. We conclude that addition of TT to the glycopeptide conjugate results in a self-adjuvanting vaccine that promotes robust antibody responses without the need for additional adjuvant, which is novel and represents a major step forward in vaccine design against disseminated candidiasis

    Selection of antibody single-chain variable fragments with improved carbohydrate binding by phage display.

    Get PDF
    A single-chain variable fragment (Fv) version of a murine monoclonal antibody, Se155-4, specific for Salmonella serogroup B O-polysaccharide, was used as a model system for testing monovalent phage display as a route for enhancing the relatively low affinities that typify anti-carbohydrate antibodies. Random single-chain Fv mutant libraries generated by chemical and error-prone polymerase chain reaction methods were panned against the serogroup B lipopolysaccharide. Panning of a randomly mutated heavy chain variable domain library indicated selection for improved serogroup B binders and yielded six mutants, five of which showed wild type activity by enzyme immunoassay. Two of these were apparently selected on the basis of better functional single-chain Fv yield in Escherichia coli. A heavy chain mutation (Ile77-->Thr) in one mutant, 3B1, appeared to have a particularly dramatic effect, resulting in yields of approximately 120 mg/liter of functional periplasmic product. The sixth mutant, 4B2, had complementarity determining region 1 (CDR1) and CDR2 mutations and demonstrated 10-fold improved binding, by enzyme immunoassay, relative to the wild type. Extensive analysis of antigen-antibody interactions indicated that the improved binding properties of 4B2 were attributable to a higher association rate constant and interaction with an epitope that is larger than the trisaccharide recognized by the wild type. None of the mutations involved known trisaccharide contact residues; this was consistent with analysis of wild type and mutant single-chain Fvs by titration microcalorimetry. Examination of the structure indicated that two mutations in the heavy chain CDR2 provided improved surface complementarity between the protein and the extended epitope encompassing 2 additional hexose residues. However, introduction of only the CDR2 mutations into the wild type structure failed to confer the improved binding properties of 4B2, indicating an indirect effect by the more distant mutations. Panning of randomly mutated light chain variable domain and full-length single-chain Fv mutant libraries did not yield mutants with improved assembly or binding properties

    Analysis by Surface Plasmon Resonance of the Influence of Valence on the Ligand Binding Affinity and Kinetics of an Anti-carbohydrate Antibody

    Get PDF
    The kinetics of ligand binding by Se155-4, an antibody specific for the Salmonella serogroup B O-polysaccharide, were studied by surface plasmon resonance. Because trace amounts of oligomers in Fab and single-chain antibody variable domain (scFv) preparations resulted in biphasic binding profiles that were difficult to analyze, all kinetic measurements were performed on purified monomeric fragments and, for certain mutant scFv, dimeric forms. Results obtained with monomeric forms indicated that the relatively low affinity of the antibody was due to rapid dissociation (koff approximately 0.25 s-1). Dimeric forms generally showed off-rates that were approximately 20-fold slower and a 5-fold increase in association rate constants to approximately 2 x 10(5) M-1 s-1. Although the association phases for scFv dimers showed good curve fitting to a one component interaction model, the dissociation phases were biphasic, presumably because the availability and accessibility of sites on the antigen always leads to some monovalent attachment. The fast off-rate for dimers was the same as the monomer off-rate. Se155-4 IgG off-rates were very similar to those observed for scFv dimer, whereas the onrate was the same as that obtained with Fab and scFv monomer

    Bacterial expression and secretion of various single-chain Fv genes encoding proteins specific for a Salmonella serotype B O-antigen.

    Get PDF
    Active single-chain Fv molecules encoded by synthetic genes have been expressed and secreted to the periplasm of Escherichia coli using the ompA secretory signal. Four different constructs were developed to investigate the effects of peptide linker design and VL-VH orientation on expression, secretion, and binding to a Salmonella O-polysaccharide antigen. Peptide linker sequences derived from the elbow regions of the Fab molecule were used alone or in combination with the flexible (GGGGS)2 sequence. VL and VH domain order in the single chain molecules had a profound effect on the level of secretion but hardly influenced total expression levels, which were approximately 50 mg/liter, chiefly in the form of inclusion bodies. With VL in the NH2-terminal position, the amount of secreted product obtained was 2.4 mg/liter, but when VH occupied this position the yield was less than 5% of this value. Enzyme immunoassays of the four products showed domain order and linker sequence affected antigen binding by less than an order of magnitude. Attempts to express active Fv from dicistronic DNA were unsuccessful, but active Fv was obtained from single-chain Fv by enzymic cleavage at a site in the elbow linker peptide. The thermodynamic binding parameters of intact and cleaved single-chain Fvs determined by titration microcalorimetry were similar to those of bacterially produced Fab and mouse IgG

    A mutational analysis of the globotriaosylceramide-binding sites of verotoxin VT1.

    Get PDF
    Escherichia coli verotoxin, also known as Shiga-like toxin, binds to eukaryotic cell membranes via the glycolipid Gb(3) receptors which present the P(k) trisaccharide Galalpha(1-4)Galbeta(1-4)Glcbeta. Crystallographic studies have identified three P(k) trisaccharide (P(k)-glycoside) binding sites per verotoxin 1B subunit (VT1B) monomer while NMR studies have identified binding of P(k)-glycoside only at site 2. To understand the basis for this difference, we studied binding of wild type VT1B and VT1B mutants, defective at one or more of the three sites, to P(k)-glycoside and pentavalent P(k) trisaccharide (pentaSTARFISH) in solution and Gb(3) presented on liposomal membranes using surface plasmon resonance. Site 2 was the key site in terms of free trisaccharide binding since mutants altered at sites 1 and 3 bound this ligand with wild type affinity. However, effective binding of the pentaSTARFISH molecule also required a functional site 3, suggesting that site 3 promotes pentavalent binding of linked trisaccharides at site 1 and site 2. Optimal binding to membrane-associated Gb(3) involved all three sites. Binding of all single site mutants to liposomal Gb(3) was weaker than wild type VT1B binding. Site 3 mutants behaved as if they had reduced ability to enter into high avidity interactions with Gb(3) in the membrane context. Double mutants at site 1/site 3 and site 2/site 3 were completely inactive in terms of binding to liposomal Gb(3,) even though the site 1/site 3 mutant bound trisaccharide with almost wild type affinity. Thus site 2 alone is not sufficient to confer high avidity binding to membrane-localized Gb(3). Cytotoxic activity paralleled membrane glycolipid binding. Our data show that the interaction of verotoxin with the Gb(3) trisaccharide is highly context dependent and that a membrane environment is required for biologically relevant studies of the interaction

    Efficient Synthesis of 3,6-Dideoxy-β- d

    No full text
    • …
    corecore