487 research outputs found

    Melatonin Is Required for the Circadian Regulation of Sleep

    Get PDF
    Sleep is an evolutionarily conserved behavioral state whose regulation is poorly understood. A classical model posits that sleep is regulated by homeostatic and circadian mechanisms. Several factors have been implicated in mediating the homeostatic regulation of sleep, but molecules underlying the circadian mechanism are unknown. Here we use animals lacking melatonin due to mutation of arylalkylamine N-acetyltransferase 2 (aanat2) to show that melatonin is required for circadian regulation of sleep in zebrafish. Sleep is dramatically reduced at night in aanat2 mutants maintained in light/dark conditions, and the circadian regulation of sleep is abolished in free-running conditions. We find that melatonin promotes sleep downstream of the circadian clock as it is not required to initiate or maintain circadian rhythms. Additionally, we provide evidence that melatonin may induce sleep in part by promoting adenosine signaling, thus potentially linking circadian and homeostatic control of sleep

    QRFP and Its Receptors Regulate Locomotor Activity and Sleep in Zebrafish

    Get PDF
    The hypothalamus plays an important role in regulating sleep, but few hypothalamic sleep-promoting signaling pathways have been identified. Here we demonstrate a role for the neuropeptide QRFP (also known as P518 and 26RFa) and its receptors in regulating sleep in zebrafish, a diurnal vertebrate. We show that QRFP is expressed in ∼10 hypothalamic neurons in zebrafish larvae, which project to the hypothalamus, hindbrain, and spinal cord, including regions that express the two zebrafish QRFP receptor paralogs. We find that the overexpression of QRFP inhibits locomotor activity during the day, whereas mutation of qrfp or its receptors results in increased locomotor activity and decreased sleep during the day. Despite the restriction of these phenotypes to the day, the circadian clock does not regulate qrfp expression, and entrained circadian rhythms are not required for QRFP-induced rest. Instead, we find that QRFP overexpression decreases locomotor activity largely in a light-specific manner. Our results suggest that QRFP signaling plays an important role in promoting sleep and may underlie some aspects of hypothalamic sleep control

    A sensitive flow cytometric methodology for studying the binding of L. chagasi to canine peritoneal macrophages

    Get PDF
    BACKGROUND: The Leishmania promastigote-macrophage interaction occurs through the association of multiple receptors on the biological membrane surfaces. The success of the parasite infection is dramatically dependent on this early interaction in the vertebrate host, which permits or not the development of the disease. In this study we propose a novel methodology using flow cytometry to study this interaction, and compare it with a previously described "in vitro" binding assay. METHODS: To study parasite-macrophage interaction, peritoneal macrophages were obtained from 4 dogs and adjusted to 3 × 10(6 )cells/mL. Leishmania (Leishmania) chagasi parasites (stationary-phase) were adjusted to 5 × 10(7 )cells/mL. The interaction between CFSE-stained Leishmania chagasi and canine peritoneal macrophages was performed in polypropylene tubes to avoid macrophage adhesion. We carried out assays in the presence or absence of normal serum or in the presence of a final concentration of 5% of C5 deficient (serum from AKR/J mice) mouse serum. Then, the number of infected macrophages was counted in an optical microscope, as well as by flow citometry. Macrophages obtained were stained with anti-CR3 (CD11b/CD18) antibodies and analyzed by flow citometry. RESULTS: Our results have shown that the interaction between Leishmania and macrophages can be measured by flow cytometry using the fluorescent dye CFSE to identify the Leishmania, and measuring simultaneously the expression of an important integrin involved in this interaction: the CD11b/CD18 (CR3 or Mac-1) β2 integrin. CONCLUSION: Flow cytometry offers rapid, reliable and sensitive measurements of single cell interactions with Leishmania in unstained or phenotypically defined cell populations following staining with one or more fluorochromes

    Misleading variations in estimated rotational frequency splittings of solar p modes: Consequences for helio- and asteroseismology

    Full text link
    The aim of this paper is to investigate whether there are any 11-yr or quasi-biennial solar cycle-related variations in solar rotational splitting frequencies of low-degree solar p modes. Although no 11-yr signals were observed, variations on a shorter timescale (~2yrs) were apparent. We show that the variations arose from complications/artifacts associated with the realization noise in the data and the process by which the data were analyzed. More specifically, the realization noise was observed to have a larger effect on the rotational splittings than accounted for by the formal uncertainties. When used to infer the rotation profile of the Sun these variations are not important. The outer regions of the solar interior can be constrained using higher-degree modes. While the variations in the low-l splittings do make large differences to the inferred rotation rate of the core, the core rotation rate is so poorly constrained, even by low-l modes, that the different inferred rotation profiles still agree within their respective 1sigma uncertainties. By contrast, in asteroseismology, only low-l modes are visible and so higher-l modes cannot be used to constrain the rotation profile of stars. Furthermore, we usually only have one data set from which to measure the observed low-l splitting. In such circumstances the inferred internal rotation rate of a main sequence star could differ significantly from estimates of the surface rotation rate, hence leading to spurious conclusions. Therefore, extreme care must be taken when using only the splittings of low-l modes to draw conclusions about the average internal rotation rate of a star.Comment: 10 pages, 7 figures, accepted for publication in MNRA

    Peroxisome Proliferator-Activated Receptor-γ Regulates the Expression of Alveolar Macrophage Macrophage Colony- Stimulating Factor

    Get PDF
    Macrophage CSF (M-CSF) regulates monocyte differentiation, activation, and foam cell formation. We have observed that it is elevated in human pulmonary alveolar proteinosis (PAP) and in the GMCSF knockout mouse, a murine model for PAP. A potential regulator of M-CSF, peroxisome proliferator-activated receptor-γ (PPARγ), is severely deficient in both human PAP and the GM-CSF knockout mouse. To investigate the role of PPARγ in alveolar macrophage homeostasis, we generated myeloidspecific PPARγ knockout mice using the Lys-Cre method to knock out the floxed PPARγ gene. Similar to the GM-CSF-deficient mouse, absence of alveolar macrophage PPARγ resulted in development of lung pathology resembling PAP in 16-wk-old mice, along with excess M-CSF gene expression and secretion. In ex vivo wild-type alveolar macrophages, we observed that M-CSF itself is capable of inducing foam cell formation similar to that seen in PAP. Overexpression of PPARγ prevented LPS-stimulated M-CSF production in RAW 264.7 cells, an effect that was abrogated by a specific PPARγ antagonist, GW9662. Use of proteasome inhibitor, MG-132 or a PPARγ agonist, pioglitazone, prevented LPS-mediated M-CSF induction. Using chromatin immunoprecipitation, we found that PPARγ is capable of regulating M-CSF through transrepression of NF-κB binding at the promoter. Gel-shift assay experiments confirmed that pioglitazone is capable of blocking NF-κB binding. Taken together, these data suggest that M-CSF is an important mediator of alveolar macrophage homeostasis, and that transcriptional control of M-CSF production is regulated by NF-κB and PPARγ

    IL-18 contributes to susceptibility to Leishmania amazonensis infection by macrophage-independent mechanisms

    Get PDF
    AbstractWe evaluated the role of IL-18 during Leishmania amazonensis infection in C57BL/6 mice, using IL-18KO mice. We showed that IL-18 is involved in susceptibility to L. amazonensis, since IL-18KO mice presented reduced lesions and parasite loads. Because macrophages are the host cells of the parasite, we investigated if macrophages were involved in IL-18-mediated susceptibility to L. amazonensis. We showed that macrophages obtained from WT or IL-18KO responded similarly to L. amazonensis infection. Moreover, we showed that C57BL/6 macrophages do not respond to IL-18, since they do not express IL-18R. Therefore, macrophages are not involved in IL-18-mediated susceptibility to L. amazonensis

    A simple, low-cost conductive composite material for 3D printing of electronic sensors

    Get PDF
    3D printing technology can produce complex objects directly from computer aided digital designs. The technology has traditionally been used by large companies to produce fit and form concept prototypes (‘rapid prototyping’) before production. In recent years however there has been a move to adopt the technology as full-scale manufacturing solution. The advent of low-cost, desktop 3D printers such as the RepRap and Fab@Home has meant a wider user base are now able to have access to desktop manufacturing platforms enabling them to produce highly customised products for personal use and sale. This uptake in usage has been coupled with a demand for printing technology and materials able to print functional elements such as electronic sensors. Here we present formulation of a simple conductive thermoplastic composite we term ‘carbomorph’ and demonstrate how it can be used in an unmodified low-cost 3D printer to print electronic sensors able to sense mechanical flexing and capacitance changes. We show how this capability can be used to produce custom sensing devices and user interface devices along with printed objects with embedded sensing capability. This advance in low-cost 3D printing with offer a new paradigm in the 3D printing field with printed sensors and electronics embedded inside 3D printed objects in a single build process without requiring complex or expensive materials incorporating additives such as carbon nanotubes
    corecore