10 research outputs found

    Development of Sensitive In Vitro Assays to Assess the Ocular Toxicity Potential of Chemicals and Ophthalmic Products

    Get PDF
    The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce the uncertainty associated with dose selection for clinical trials. The first section of this thesis describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals and ophthalmic products. The proper utilization of in vitro methods can accurately predict toxic threshold levels and reduce animal use in product development. Sections two, three and four describe the development of new sensitive in vitro methods for predicting ocular toxicity. Maintaining the barrier function of the cornea is critical for the prevention of the penetration of infections microorganisms and irritating chemicals into the eye. Chapter 2 describes the development of a method for assessing the effects of chemicals on tight junctions using a human corneal epithelial and canine kidney epithelial cell line. In Chapter 3 a method that uses a primary organ culture for assessing single instillation and multiple instillation toxic effects is described. The ScanTox system was shown to be an ideal system to monitor the toxic effects over time as multiple readings can be taken of treated bovine lenses using the nondestructive method of assessing for the lens optical quality. Confirmations of toxic effects were made with the utilization of the viability dye alamarBlue. Chapter 4 describes the development of sensitive in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, using fluorescent dyes. The goal of this research was to develop an in vitro test battery that can be used to accurately predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic formulations

    In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells

    Get PDF
    Youn, H.-Y., McCanna, D. J., Sivak, J. G., & Jones, L. W. (2011). In vitro ultraviolet–induced damage in human corneal, lens, and retinal pigment epithelial cells. Molecular Vision, 17, 237–246.Purpose: The purpose was to develop suitable in vitro methods to detect ocular epithelial cell damage when exposed to UV radiation, in an effort to evaluate UV-absorbing ophthalmic biomaterials.Methods: Human corneal epithelial cells (HCEC), lens epithelial cells (HLEC), and retinal pigment epithelial cells (ARPE-19) were cultured and Ultraviolet A/Ultraviolet B (UVA/UVB) blocking filters and UVB-only blocking filters were placed between the cells and a UV light source. Cells were irradiated with UV radiations at various energy levels with and without filter protections. Cell viability after exposure was determined using the metabolic dye alamarBlue and by evaluating for changes in the nuclei, mitochondria, membrane permeability, and cell membranes of the cells using the fluorescent dyes Hoechst 33342, rhodamine 123, calcein AM, ethidium homodimer-1, and annexin V. High-resolution images of the cells were taken with a Zeiss 510 confocal laser scanning microscope.Results: The alamarBlue assay results of UV-exposed cells without filters showed energy level-dependent decreases in cellular viability. However, UV treated cells with 400 nm LP filter protection showed the equivalent viability to untreated control cells at all energy levels. Also, UV irradiated cells with 320 nm LP filter showed lower cell viability than the unexposed control cells, yet higher viability than UV-exposed cells without filters in an energy level-dependent manner. The confocal microscopy results also showed that UV radiation can cause significant dose-dependent degradations of nuclei and mitochondria in ocular cells. The annexin V staining also showed an increased number of apoptotic cells after UV irradiation.Conclusions: The findings suggest that UV-induced HCEC, HLEC, and ARPE-19 cell damage can be evaluated by bioassays that measure changes in the cell nuclei, mitochondria, cell membranes, and cell metabolism, and these assay methods provide a valuable in vitro model for evaluating the effectiveness of UV-absorbing ophthalmic biomaterials, including contact lenses and intraocular lenses.This project was funded by 20:20 NSERC Ophthalmic Materials Network

    Sequestration: An Alternate Mechanism for Anomie

    No full text
    This dissertation introduces the idea of sequestration, or the separation of populations and social resources based on perceived social worth of the populations involved. I demonstrate the separation of socially valued populations and socially valued resources from those that are not valued using regression methods and data for Los Angeles County in 2000. I find that significantly more park lands of better quality are allocated for upper middle-class neighborhoods than for the poorer areas. Significantly more social service facilities are located in lower income areas. Arrest rates indicate that more active policing patterns are present in areas with higher income and higher rates of home ownership. Disproportionate monitoring of privileged populations, service centers, and discovered crimes, and profiling by law enforcement help to explain these patterns. Content analysis using local newspaper coverage of various Los Angeles County communities indicates that news media favors coverage of the higher income populations and ignores the difficulties of life for lower income populations. The mainstream media is an important instrument by which plausibility structures and elite agendas are disseminated. Privileged populations display a sense of proprietary ownership of government and its resources. I introduce a theoretical outline of the manifestations of power in society and qualitatively demonstrate the concepts using examples from local newspaper articles and the historical treatment of Native Americans by the U.S. government. I argue that U.S. society resembles a "total institution" because institutional resources and political authority are concentrated in very few hands. I propose that anomie can be conceived as a product of the asymmetric operation of institutions in society which allocates more and better rewards for those with higher social standing and at the same time stigmatize the less powerful populations. Anomie is seen as a prevalent condition in western society and can be measured by the lack of participation in primary institutions by large segments of the population, as illustrated by low voter turnout, lack of religious affiliation, high rates of non-marriage, and school dropout rates

    Human corneal epithelial cell shedding and fluorescein staining in response to silicone hydrogel lenses and contact lens disinfecting solutions

    Full text link
    A pilot study was conducted to evaluate human corneal epithelial cell shedding in response to wearing a silicone hydrogel contact lens/solution combination inducing corneal staining. The nature of ex vivo collected cells staining with fluorescein was also examined. A contralateral eye study was conducted in which up to eight participants were unilaterally exposed to a multipurpose contact lens solution/silicone hydrogel lens combination previously shown to induce corneal staining (renu® fresh™ and balafilcon A; test eye), with the other eye using a combination of balafilcon A soaked in a hydrogen peroxide care system (Clear Care®; control eye). Lenses were worn for 2, 4 or 6 hours. Corneal staining was graded after lens removal. The Ocular Surface Cell Collection Apparatus was used to collect cells from the cornea and the contact lens. In the test eye, maximum solution-induced corneal staining (SICS) was observed after 2 hours of lens wear (reducing significantly by 4 hours; p < 0.001). There were significantly more cells collected from the test eye after 4 hours of lens wear when compared to the control eye and the collection from the test eye after 2 hours (for both; n = 5; p < 0.001). The total cell yield at 4 hours was 813 ± 333 and 455 ± 218 for the test and control eyes, respectively (N = 5, triplicate, p = 0.003). A number of cells were observed to have taken up the fluorescein dye from the initial fluorescein instillation. Confocal microscopy of fluorescein-stained cells revealed that fluorescein was present throughout the cell cytoplasm and was retained in the cells for many hours after recovery from the corneal surface. This pilot study indicates that increased epithelial cell shedding was associated with a lens-solution combination which induces SICS. Our data provides insight into the transient nature of the SICS reaction and the nature of fluorescein staining observed in SICS
    corecore