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Abstract 

The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants 

can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce 

the uncertainty associated with dose selection for clinical trials. The first section of this thesis 

describes how in vitro methods can be used to improve the prediction of the toxicity of chemicals 

and ophthalmic products.  The proper utilization of in vitro methods can accurately predict toxic 

threshold levels and reduce animal use in product development. Sections two, three and four 

describe the development of new sensitive in vitro methods for predicting ocular toxicity.  

Maintaining the barrier function of the cornea is critical for the prevention of the penetration of 

infections microorganisms and irritating chemicals into the eye.  Chapter 2 describes the 

development of a method for assessing the effects of chemicals on tight junctions using a human 

corneal epithelial and canine kidney epithelial cell line.  In Chapter 3 a method that uses a 

primary organ culture for assessing single instillation and multiple instillation toxic effects is 

described.  The ScanTox system was shown to be an ideal system to monitor the toxic effects 

over time as multiple readings can be taken of treated bovine lenses using the nondestructive 

method of assessing for the lens optical quality. Confirmations of toxic effects were made with 

the utilization of the viability dye alamarBlue.  Chapter 4 describes the development of sensitive 

in vitro assays for detecting ocular toxicity by measuring the effects of chemicals on the 

mitochondrial integrity of bovine cornea, bovine lens epithelium and corneal epithelial cells, 

using fluorescent dyes.  
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The goal of this research was to develop an in vitro test battery that can be used to accurately predict the 

ocular toxicity of new chemicals and ophthalmic formulations. By comparing the toxicity seen in vivo 

animals and humans with the toxicity response in these new in vitro methods, it was demonstrated that 

these in vitro methods can be utilized in a tiered testing strategy in the development of new chemicals and 

ophthalmic formulations.   
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Chapter 1 

The use of Sensitive Cell and Molecular Toxicity Models in Developing Risk 

Asessments for Chemicals Used in New Ophthalmic Formulations 
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1.1 Introduction 

In vitro test methods are being developed to improve the prediction of chemical and product 

toxicity.  Live animal test systems are increasingly being replaced by in vitro methods.  These 

test methods are used to understand the underlying toxic mechanisms and to find chemical 

toxicity thresholds.   Regulatory agencies throughout the world are actively involved in 

reviewing new testing methodologies and determining if adequate in vitro replacements for 

animal tests can be recommended.   In September of 2004, the European Union 7
th

 Amendment 

to the Cosmetic Directive prohibited the animal testing of finished cosmetic products in the EU.  

Beginning March 11, 2009 there will be a ban on animal testing of cosmetic ingredients and final 

product formulations (Rossignol, 2005).   Currently, there are an estimated 30,000 chemicals in 

use for which toxicology information has never been registered in Europe.  In June of 2007 the 

Registration, Evaluation, Authorisation and Restriction of Chemicals (REACH) legislation was 

adopted that requires registration of these chemicals in an 11-year period with appropriate 

toxicological characterization.  In article one of this legislation the use of alternative methods to 

animal testing is encouraged, with animal testing carried out only as a last resort (Lilienblum et 

al., 2008; Grindon et al., 2008). 

 

Because of the increased requirements for toxicological characterization of chemicals, concerns 

about animal welfare and the need for understanding underlying toxicological mechanisms for 

risk assessment, organizations have been established for reviewing new in vitro alternative 

methods.   The validation organization in the United States is the Interagency Coordinating 

Committee on the Validation of Alternative methods (ICCVAM), administered by the National 



 

 3 

Toxicology Program Interagency Center for the Evaluation of Alternative Methods (NICEATM).  

In Europe the validation organization is the European Centre for the Validation of Alternative 

methods (ECVAM) and in Japan the organization is the Japanese Center for the Validation of 

Alternative Methods (JaCVAM). These organizations coordinate validation studies and make 

recommendation to regulatory agencies on the use of the proposed new methods.   

 

Regulatory agencies have adopted a number of new in vitro methods.   The US government 

Interagency Coordinating Committee on the Validation of Alternative Methods announced (June 

23, 2008) regulatory acceptance of two new in vitro ocular safety assays by the US FDA, EPA 

and Consumer Product Safety Commissions (Mackar, 2008).  The committee approved the use 

of the bovine corneal opacity and permeability assay (BCOP) and the isolated chicken eye (ICE) 

test method for the assessment of corrosives or severe ocular irritants.   These assays are used to 

establish hazard warnings on chemicals that may cause severe or permanent eye damage without 

the need for rabbit ocular irritation testing.  The adoption of these two in vitro assays will reduce 

significantly the number of animals that will have to be tested in order to satisfy the EU REACH 

legislation.   

 

1.2 Approval of New In Vitro Assays 

The approval of the BCOP and ICE test for hazard identification of corrosives and severe ocular 

irritants demonstrates the use of in vitro tests in a tiered testing strategy for establishing risk.   

Approval of the test methods was based on validation studies which showed that the accuracy for 

predicting corrosive or severe ocular irritants for the BCOP was 79% to 81% with an overall 
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false positive rate of 19 to 21% and a false negative rate of 16 to 25% when compared to in vivo 

rabbit ocular irritation data classified according to EPA, EU and GHS systems.  For the ICE test 

the accuracy was 83% to 87% with a false positive rate of 6% to 8% and overall false negative 

rate of 41% to 50% (ICCVAM, 2006a; ICCVAM, 2006b).  With a tiered testing strategy an 

assay does not have to be 100% accurate in order for it to be adopted for use to assess toxic risk.  

For testing severe ocular irritants, if the test is positive, no further testing in animals is required.   

There is acceptance that some chemicals may be mislabelled as severe irritants, but the rate is 

low enough to be considered acceptable.    False negatives, however, are usually not acceptable, 

a chemical inappropriately identified as non-corrosive or non-severe could cause harm if handled 

inappropriately.  If the response is negative the product is then tested in animals to confirm that it 

cannot cause irreversible damage.  

 

In addition to the correct labelling of corrosive or severe ocular irritants, it is hoped that in vitro 

tests will also be used to minimize the use of animals for other product categories. These include 

drops for dry eye, pharmaceutical drops for ocular diseases, contact lens rewetting drops, contact 

lens care solutions and contact lenses.  In order to adopt the tiered testing strategy for these 

products the threshold of toxicity would need to be identified for each product category.   For 

consumer products the threshold would likely be very low, as even low grade irritation would be 

unacceptable.  For pharmaceutical products the threshold of toxicity could be higher as the toxic 

side effects of the drugs would have to be weighed against the severity of the disease that is 

being mitigated by the drug application.  In order to adopt new in vitro methods that predict these 

toxicity thresholds, as was the case with the BCOP and ICE, a test does not have to be 100% 
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accurate to be adopted.  There may be some concerns by industry that in a tiered testing program 

that utilizes an in vitro assay  false positives may eliminate a few promising chemicals from 

potential development.  This concern should be considered in validating an assay for each 

product category.  An expectation of an assay having 100% accuracy with no false positives is 

unreasonable and would inhibit the progression of the use of in vitro assays to replace animal 

tests.  Industry representatives and the reviewers at the regulatory agencies will need to come to 

a consensus for the acceptable number of false positives in these new in vitro assays. 

 

1.3 Required Animal Tests for Regulatory Approval of Ophthalmic Products 

Currently the use of animal testing is mandatory in the US for the evaluation of contact lens, 

contact lens care solutions, contact lens rewetting drops and new drugs (FDA, 1994; FDA, 1997; 

Ukelis et al. 2008).  To assess ocular toxicity single, repeat instillation and contact lens wear 

studies in the rabbit are required.  Sensitization testing is preformed using the mouse local lymph 

node assay or guinea pig sensitization assay.   Systemic toxicity testing of contact lens extracts in 

mice is required to assess the toxic potential of leachable chemical constituents.  Systemic 

adsorption of drugs occurs through adsorption into the conjunctiva and cornea. At least 50% of 

systemic adsorption of topically applied ophthalmic drugs occurs through the nasal pathway after 

passage of the drop into the nasolacrimal drainage system (Lee et. al., 1993).  Drainage from the 

nasolacrimal duct to the nasal cavity eventually enters the pharynx and can come into contact 

with the secretions of the upper respiratory and gastrointestinal tracts (Urtti and Salminen, 1993).   

To evaluate for oral toxicity, contact lens care products are dosed orally at 15 g per Kg body 

weight (FDA, 1997).   If 80% of the animals survive, the test material is not considered orally 
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toxic.  For drug products, oral toxicity LD50 (median lethal dose, dose producing lethality in 

50% of the animals) was discontinued in 1991 (Ukelis et al., 2008).  Single dose (acute) toxicity 

for a pharmaceutical is performed in two mammalian species prior to the first human exposure 

(ICH, 2000). Typically doses used are at or above the expected clinical doses in animal acute 

toxicity studies.  For drug products, animal testing is used for repeat dose oral toxicity studies 

with a duration usually equal to or greater than the duration of the clinical trial (ICH, 2000). 

Animal testing is also required for assessments of reproductive toxicity, carcinogenicity, safety 

pharmacology, immunotoxicty and toxicokinetic and pharmacokinetic studies (ICH, 1997; ICH, 

1994a; ICH, 1994b; ICH, 1993; ICH, 2000; ICH, 2005).   

 

1.4 Current Use of In Vitro Assays  

 Currently in vitro tests are evaluated for ophthalmic products but are not used in a tiered testing 

strategy designed to reduce the use of animals in testing.  Instead, these in vitro tests are used to 

gain additional information on the potential toxicity of the product that may not be identified by 

the in vivo tests or by the clinical evaluations.  In vitro tests may at times be more sensitive than 

the in vivo tests and thus may identify sub-clinical toxicity that may present itself in the patient 

as a pathology after chronic use of the product.  The use of in vitro tests is particularly important 

for understanding mechanisms of toxicity.  When in vitro tests are identified as showing 

sensitivity greater than the in vivo animal and clinical tests, the in vitro test can be used to 

establish the threshold of toxicity.   
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The cytoxicity tests required for contact lens solutions, contact lens rewetting drops, and contact 

lenses include the agarose overlay test (also known as the agarose diffusion test), direct contact 

test, elution test and inhibition of growth assays. (FDA 1997, FDA, 1994). The International 

Standards Organization has written a standard for cytotoxicity testing for medical devices (ISO, 

1994; ISO, 1999).  Cytotoxicity testing of contact lenses and contact lens solution products are 

preformed based on the methodologies described in these ISO documents. Studies performed 

using the methods described by ISO have typically utilized cell lines that are not of ocular origin. 

These cell lines include L929 mouse fibroblast cells and V79 Chinese hamster cells. 

Applications include testing the product in direct contact with the cell lines or indirectly by 

assessing the toxicity of device extracts (Tsuchiya, 1994).    

 

 Only a few limited validation studies have assessed the use of these cytotoxicity methods for the 

prediction of the ocular irritation potential of ophthalmic products. A validation study evaluated 

16 cosmetic products using the agarose diffusion method (Wallin et al., 1987).  Chemicals were 

initially tested in the Draize eye test and were classified as either irritants or non-irritants.  

Comparing the in vitro score with the in vivo results Wallen et al. found that 80% (4/5) of the 

samples that tested positive in the Draize also tested positive in the agarose diffusion method.  

Also, 82% (9/11) of samples that tested negative in the Draize tested negative by this method.   

In another evaluation by the same investigators 22 cosmetic products were tested (Jackson et al., 

1988).  There was a 100% correlation between the in vitro and in vivo Draize with no false 

negative or false positive results.  

 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Tsuchiya%20T%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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The apparent success of this assay in predicting the eye irritation potential of cosmetic products 

was later put into doubt by an evaluation of 25 surfactant based formulations (Gettings et al., 

1996).  In this study the assay had a false positive rate of 86% and a false negative rate of 0%.  In 

another investigation both L929 mouse fibroblast cells and rabbit corneal cells were tested by the 

agar diffusion assay to assess 22 cosmetic products (Milstein and Hume, 1991).  A high degree 

of correlation (r = 0.991) was found between the L929 and the rabbit corneal cell line results.  

This indicated that cell lines other than L929 could potentially be utilized in the agarose 

diffusion test.  The rabbit corneal cell line was ultimately used to assess the validity of the agar 

diffusion method (Reboulet et al., 1994).  A three level ocular classification scheme based on in 

vivo Draize scores was developed.  Chemicals were classified as non-irritants, irritants or severe 

irritants.  In this analysis nine compounds were classified as severe irritants, in both the in vivo 

and in vitro tests. The false positive rate was 0% and the false negative rate was 7%. Other than 

the testing performed for the agarose diffusion test,  no formal validation studies have been 

published on the direct contact test, elution test required by the FDA and the International 

Standards Organization or the V79 colony assay required by the Japanese Ministry of Health, 

Labor and Welfare.  

 

Although the required in vitro tests for regulatory product submissions have not been accepted as 

alternatives for ocular irritation tests by ICCVAM, ECVAM or JaCVaM, the studies are still 

useful for assessing potential toxicity by using positive controls.  The International Organization 

for Standardization has set forth ISO-10993-5 “Tests for in vitro cytotoxicity” (ISO, 1999).  The 

methods describe general principles for performing cytotoxicity assays, but no one method or 
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test endpoint is mandated. The key component of each assay used is the comparison of the test 

sample to the positive and negative controls used in the assays.  The positive controls include 

organo-tin stabilized poly(vinylchloride) for solid materials and extracts, and dilutions of phenol, 

zinc diethyldithiocarbonate (ZDEC) and  zinc dibutyldithio-carbamate (ZDBC) polyurethanes  

for extract testing (ISO, 1999).  

 

The interpretation of the cytotoxicity potential of medical devices and their extracts consist of 

establishing a scoring system in which the test articles’ effect on the cell cultures are compared 

to the negative and positive controls. Also, comparisons of the results of the new test article to 

similar medical devices or materials are suggested. Comparison of the test article to the positive 

and negative controls allows for the determination of the relative toxicity of the test article to 

these known toxic materials. Also, since these methods have been required by regulatory 

agencies for decades, most companies have a database of the results of development 

formulations and current products for means of comparison, in addition to comparison to the 

positive controls. 

 

The ISO guidelines indicate a preference for established cell lines in testing but do not require 

use of any particular cell line or exposure time. The use of primary cell culture, and organo-typic 

cultures obtained directly from living tissues are allowed, if the reproducibility and accuracy of 

these tests are demonstrated (ISO, 1999).  The exposure time is established by the toxicologist 

based on the use of the material.  The US FDA and the Japanese Ministry of Health Labor 

(MHLW) and Welfare reference cytotoxicity protocols that are more specific than the tests 
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recommended by ISO 10993-5.  The basic principles are the same in that a test article is 

compared to established positive controls, although the FDA and the MHLW recommend testing 

using specific cell lines and exposure times (Anand, 2000).  The use of established regulatory 

cytotoxicity assays for determining the risk of new ophthalmic products can be criticised for the 

use of cell lines that are not relevant to the eye, exposure times that may exceed the time of 

exposure of an ophthalmic product in the eye, and the use of positive controls that may not have 

been established for assessing ocular toxicity. It is for these reasons that new in vitro assays 

using ocular cells, relevant exposure times and control materials that are ocular toxins, have been 

proposed for determining ocular irritation potential.  

 

1.5 Validation of New In Vitro Assays 

The relevance of a new in vitro assay for predicting ocular irritation is important for the 

establishment of a cell culture method in addition to evaluating the method’s reproducibility.  

There are a number of ways in which to measure the relevance of an in vitro assay.  Since there 

is limited data on the irritation potential of chemicals in human eyes, in vitro test data has 

traditionally been compared to the Draize maximal average scores (MAS) used for assessment of 

ocular irritation in the rabbit eye.  One method of comparing the in vitro data with the in vivo 

data is to assign chemicals to specific irritation classes at various concentrations.  The 

classification scheme can be as simple as categorizing the test sample as either a non-irritant or 

an irritant, or the scheme could be more complex using multiple categories such as non-irritant, 

mild irritant, moderate irritant and severe irritant.   The ratio of irritants correctly predicted by 

the in vitro test to the total number of irritants identified in vivo is then determined. This is 
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defined as the sensitivity of the test system; the higher the sensitivity, the less likely the 

occurrence of false negative results.  The ratio of non-irritants correctly predicted in vitro to the 

total number of non-irritants identified in vivo, defined as the specificity of the test system, is 

also determined.  A higher specificity lowers the likelihood of the occurrence of a false positive 

response.  

 

Another way to assess the accurancy of an in vitro alternative method is to perform a correlation 

analysis by directly comparing the in vitro data endpoints to the in vivo MAS scores.  If there is a 

reasonable correlation then a prediction model can be established.  A subsequent analysis can 

then be performed using additional chemicals to test the validity of the assay’s prediction model. 

Using chemicals of known ocular toxicity, the relevance of the method for assessing ocular 

irritation can be determined. 

 

Recent validation studies have attempted to determine the relevance of in vitro test models to 

rabbit Draize ocular irritation testing.  There are two major problems with this validation 

strategy:  the Draize test is not validated for predicting ocular irritation testing in humans nor is it 

sufficiently sensitive to detect low dose effects of ophthalmic chemicals.  In an investigation of 

intra- and interlaboratory variability of the Draize test, Wiel and Scala (1971) showed variable 

results both between and within laboratories. The Draize test was found to be particularly 

variable in the middle range of irritancy (Prinsen, 2006).   The variability of the Draize test has 

been attributed to natural animal variability, variable retention of the test article on the corneal 

surface, the low numbers of animals used, and variability in scores due to the subjective scoring 
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system used (York and Steiling, 1998).  Beckley et al. (1969) compared the ocular irritation 

response of a 5% soap solution in monkeys, rabbits and humans using slit-lamp biomicroscopy, 

fluorescein, and the Draize visual observation method. Instillation of a 5 % soap solution in 

rabbit eyes caused almost no corneal epithelial effect whereas corneal epithelial damage occurred 

in both monkeys and humans. These lesions were not visible without the use of slit-lamp 

biomicroscopy and/or fluorescein. The fact that corneal epithelial damage did not occur in the 

rabbit and that microscopy and/or fluorescein were required to detect damage in the other species 

shows that the rabbit may not be the best animal model for detecting human ocular response. 

Since Draize scoring does not require biomicroscopy or use of fluorescein the method may not 

be sensitive enough to detect corneal epithelial damage. Since the ocular irritation database that 

most in vitro methods are compared to is Draize scoring without biomicroscopy or use of 

fluorescein (Bagley, 1999) this in vivo database may not be accurate, especially for chemicals 

that cause mild ocular damage.  

 

A recent validation study of product formulations tried to rectify this problem by evaluating 

mildly irritating formulations that produce eye discomfort in the absence of macroscopic clinical 

signs in the human against two in vitro models without the use of Draize scoring (Debbasch et 

al., 2005).  Make-up removers were applied 12 times to the exterior surface of the eyelids of 

human subjects.  Tears were collected twenty seconds after application to confirm that the 

product reached the eyes. Severity of irritation was determined by sensation descriptions of 

burning, stinging, itching, lacrymation, dryness, blurred vision and foreign body sensation on a 5 

point scale of severity.  Minimal bulbar conjunctival redness occurred with application of 6 of 
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the 12 products. Results from two in vitro assays for eye irritation, the HET-CAM (Hen's Egg 

Test Chorioallantoic Membrane assay) and the BCOP assay, did not correlate to the clinical 

discomfort and adverse clinical signs. Measurements using a human corneal epithelial cell line 

for cytotoxicity and cytokine release of IL-8 showed a lack of correlation between the 

cytotoxicity measurements used in this study and clinical discomfort, but there was a good 

correlation of clinical signs with IL-8 release.     

 

There is a dilemma when validating new in vitro methods for mild ocular irritation. If in vitro 

results are compared to the Draize database, you are comparing to data that are inaccurate and 

not sensitive enough to detect mild ocular irritation.  Directly validating to human studies is 

difficult as it is unethical to carry out a large scale tests in humans with ocular irritants that may 

cause irreversible eye damage.  Testing chemicals for ocular irritation in the monkey and adding 

biomicroscopic and fluorescein evaluations may correlate better to human irritation, but 

additional human studies would have to be performed to demonstrate that the monkey model is 

predictive. Also, there would not be public support for performing large scale animal validation 

studies in primates. Dogs are used to assess the ocular irritation potential of pharmaceuticals, but 

the results from these studies are rarely published so the utility of these data in validation studies 

is limited.  ICCVAM has recognized the inadequacy of the current database for ocular irritants 

and has requested the submission of data from substances tested for ocular irritancy in humans, 

rabbits, and/or in vitro systems to develop the best database possible for assessing chemicals that 

cause mild ocular irritation (Federal Register Notice, 2007).   

 



 

 14 

A standard procedure for identifying safe doses of chemicals is to determine the maximum dose 

for which there is no observable adverse effect (NOAEL). The NOAEL is then divided by safety 

(uncertainty) factors to derive acceptable exposure levels (Gaylor et al., 1998).  The need for the 

factor is based on the fact that extrapolation from a toxicity model, extrapolation from acute data 

to chronic use, and/or use of data from tests of unknown accuracy or reliability makes the 

calculated NOAEL uncertain; the greater the uncertainty the larger the factor.  The use of an 

uncertainty factor of 100, derived from a factor of 10 to account for inter-species differences and 

a factor of 10 to account for inter-individual differences (Combes, 2005), is typical.   The inter-

individual differences can be subdivided into factors that allow for differences in the fate of a 

chemical in the body (toxicokinetics) and differences in tissue sensitivities (toxicodynamics). If 

there is good understanding of the inter-individual differences of a specific chemical the 10-fold 

safety factor can be reduced (Renwick and Laxarus, 1998).  Ritter et al. (2007) described other 

uncertainties that may exist in the data which can necessitate the application of additional safety 

factors. These additional factors include having a lowest observable adverse effect level 

(LOAEL) instead of a NOAEL, extrapolating from incomplete studies, extrapolating from 

subchronic studies to chronic product use and possible interaction with other chemicals.  Risk 

assessment when applied to drugs also includes assessments to determine if the benefits of drug 

therapy exceed the risks (Gaylor et al., 1998). Prior to starting a human clinical trial smaller 

safety factors might be used when toxicities produced by the therapeutic are easily monitored, 

reversible, predictable, and exhibit a moderate to shallow dose-response relationship with 

toxicities that are consistent across the tested species (FDA, 2002).  This is also true if the 
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NOAEL was determined based on toxicity studies of longer duration compared to the proposed 

clinical schedule in healthy volunteers (FDA, 2002). 

 

In order to use sensitive cell and molecular toxicity models for risk assessment of  

ophthalmic chemicals and formulations, it has to be demonstrated that the model can predict the 

toxicity of chemicals demonstrated to be toxic to the human eye.  Although the number of 

chemicals tested in human eyes is small, the toxicity of one chemical, (benzalkonium chloride, 

BAK), has been well characterized.  BAK is a widely used preservative in ophthalmic products. 

In topical multidose solutions it is normally present at an average concentration of 0.01% (range 

0.004%–0.02%) (Noecker, 2004).  Validation studies that use various concentrations of BAK as 

positive controls would show relevance to human ocular toxicity in the mild range of irritation.  

Comparison of the toxicity of new chemicals and product formulations to the effects of BAK can 

form the basis for assessing the potential risk for human ocular damage and irritation.  

 

Thresholds of BAK toxicity have been determined using a number of sensitive systems and 

endpoints. Using scanning electron microscopy (SEM) of rabbit corneas treated with drops 

containing 0.01%, BAK was found to be very injurious (Pfister and Burnstein, 1976).  After 

thirty minutes of exposure most of the top layer of cells desquamated; microvilli were lost in the 

lower layers. Burnstein (1980) applied BAK to rabbit and cat corneal epithelium at 

concentrations between 0.001% and 0.01% and the corneas were evaluated by scanning electron 

microscopy.   Initial toxicity was detected at 0.0025%; corneas exposed to higher concentrations 

showed increased toxic effect. Using in vivo confocal microscopy Kovoor (2004) evaluated 
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fluoroquinolone antibiotics containing 0.005% BAK instilled at least 4 times a day for 7 days in 

the rabbit eye and demonstrated a significant decrease in corneal epithelial thickness after 7 days 

of exposure. A recent study by Ly et al. (2006) showed that a fourth generation fluoroquinilone 

with 0.005% BAK compromised the tight junctions of the rabbit cornea whereas another 

fluoroquinilone that did not contain BAK left the tight junctions intact.  Ichijima et al. (1992) 

evaluated in vivo rabbit corneas after exposure to BAK drops at 0.02%, 0.01% and 0.005% using 

Tandem scanning confocal microscopy and SEM.  The application of 0.005% BAK caused 

superficial epithelial cells to swell and desquamate. In a study that evaluated 0.004% BAK and 

0.005% BAK instilled in rabbit eyes both as a solution and with use as a RGP contact lens care 

solution there were significant increases in desquamation of the superficial corneal epithelium 

and tear LDH activity compared with control eyes after 3 weeks of treatment (Imayasu, 1994).  

These measurements of ocular toxicity are significantly more sensitive than the response seen in 

the Draize test which exhibited no toxicity (Score of 0) even at 0.1% BAK levels (Klausner et al, 

2003).  

 

In human clinical studies biopsies of conjunctivae and trabeculums of patients who were treated 

with eye drops containing 0.01% BAK were abnormally infiltrated by cells expressing 

inflammatory or fibroblastic markers (Baudouin, 1999).  Chronic users of glaucoma drops 

containing BAK showed increased secretion of pro-inflammatory cytokines by conjunctival cells 

(Malvitte, 2007).
 
 Exposure to timolol preserved with 0.005% BAK caused an unstable pre-

corneal tear film and disrupted epithelial barrier function to a greater degree than the unpreserved 

control solution in human patients (Takeshi, 2003). Dry eye patients treated with polyvinyl 
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pyrrolidone preserved with BAK at 0.005% showed an increase in corneal epithelial 

permeability (Gobbels and Spitznas, 1992). 
 
 Overall these studies suggest that the toxicity 

threshold for BAK in humans is approximately 0.005%. 

 

To our knowledge, there are no studies planned for identifying the toxic potential of other ocular-

application chemicals in humans.  Human data from clinical studies which failed due to mild 

irritation is a possible source for establishing toxicity of additional chemicals.  However, 

industry rarely publishes these studies so the data are not available to researchers.  Only a few 

studies have been published that evaluated human toxicity of mild ocular irritants other than 

BAK (Debbasch et al., 2005, Roggeband et al., 2000, Beckley, 1965, Beckley et al., 1969, 

Burnstein, 1984).  

 

 The absence of multiple-chemical human data for mild ocular irritation presents a challenge for 

validation of in vitro models for predicting that endpoint; comparisons are largely limited to 

BAK alone.  Since the ocular toxicity of BAK is well characterized, assessing the effect of BAK 

in proposed in vitro models can establish the relevance of the new assay for predicting ocular 

irritation. Chemicals that have been approved for sale can be used as additional controls. Since 

marketed product has been assessed for toxicity in human clinical trials the extent that the new 

assay predicts the safety of currently marketed products can be assessed in a validation study. If 

the new assay accurately predicts toxicity of BAK at the concentration of 0.005% and above and 

does not overestimate the toxicity of currently marketed product, the relevancy of the new assay 

for predicting ocular irritation can be determined. 
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In vitro assays are currently available for assessing various physiological changes to cells after 

chemical exposure. These assays can assess changes to mitochondria (Bantseev et al., 2003; 

Bantseev et al., 2007),  metabolic activity (McCanna et al., 2008,  Debbasch et al. 2001, Hallet, 

2005;  Oriowo, 2006; Dutot  et al., 2008;  Dracopoulos et al.,  2007), tight junctions (Tchao et 

al., 2002; McCanna et al., 2008;  Imayasu et al., 2008; Chuang et al., 2008), optical quality 

(Banseev et al., 2003; Bantseev et al., 2008; Oriowo, 2006; Ho et al., 2008), reactive oxygen 

species (Debbasch et al., 2001), and cell membrane integrity (Debbasch et al., 2001;  De Saint 

Jean et al., 2002).   Evaluating BAK and currently marketed ophthalmic products can establish 

the baseline levels of toxicity and response that correlate to human toxicity thresholds.  Once 

these baselines are established new chemicals can be evaluated within these assays to determine 

if the effect on the cells is above or below the established threshold.  

 

New cell and molecular technologies are being developed that show promise for use as 

alternatives to animal testing. Recently a microarray chip for gene expression was developed for 

rabbit ocular research (Popp et al., 2007). Gene expression of messenger RNA showed that when 

comparing an eye that underwent glaucoma filtration surgery to untreated control eyes, there 

were 315 genes that were expressed that were altered by glaucoma therapy. Microarrays have 

been used to evaluate the expression of 207 stress genes of rat primary hepatocytes that were 

exposed to the cytotoxic chemical cadmium (Badisa et al., 2008). Of the 207 genes evaluated, 32 

genes were either upregulated or down regulated by cadmium cytotoxicity. Proteomics using 

mass spectrometric analyses of proteins enables detailed assessments of chemical changes in 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Oriowo%20MO%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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cells after chemical exposure. Bhattacharya et al. (2007) describes how proteomic studies can be 

performed to assess ocular changes after chemical exposures. The characterization of the human 

proteome and correlations to proteomic studies in cultured cells showed promise for 

understanding the mechanisms of toxic injury and the means of devising intervention strategies 

for the mitigation of ocular toxicity.  In the future the development of microarrays and advances 

in the analysis of protein expression will enhance the use of in vitro methods for toxicology 

testing by assessing the details of gene expression after toxic exposure.  

 

What would be the final criteria for establishing that a new assay is valid for use and how could 

the new assay be used to assess the risk of new ophthalmic chemicals?  A large number of 

currently marketed ophthalmic products would have to be tested using the new assay and 

assessed for prediction of irritation.  If a currently used ophthalmic product is identified as being 

a mild irritant, it can be used as a mild irritant positive control. Various concentrations of BAK 

can be tested from 0.005% to 0.1% to evaluate the new in vitro assay’s ability to discriminate 

between chemical doses that cause mild and moderate toxicity. Testing marketed product 

formulations that are not considered to be ocular irritants assesses the assay’s ability to correctly 

identify safe non-irritating chemical formulations.  Using this validation strategy, new in vitro 

methods that correctly identify mild irritants and non-irritants can then be utilized.  If a new 

chemical exceeds the established toxicity threshold, the chemical can be identified as toxic and 

eliminated from further development. Alternatively, the concentration can be lowered to the 

concentration that is below the established threshold.  The validation and use of new methods in 

this manner reduces the number of animals required for product development.  
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In addition to the reduction of the use of animals for product development, in vitro assays reduce 

the uncertainty in the prediction of the safe doses for human clinical studies.  Prior to starting 

human clinical trials, smaller safety factors might be used when toxicities indicate a moderate to 

shallow dose-response relationship with toxicities that are consistent across the tested species 

(FDA, 2002).  Decreasing the uncertainty in the prediction of the safe clinical dose is critical for 

selecting the appropriate dose that is effective without causing toxicity. Demonstrating that the 

prediction of the NOAEL for the in vitro assays is consistent with tested animal species adds to 

the weight of evidence showing that the correct dose has been selected for clinical trial.  

 

1.6 Criticisms for the Use of In Vitro Assays for Product Development 

In vitro systems have been criticised for lacking the normal pathways for absorption, distribution 

metabolism and excretion (ADME) found in live animals and for lacking intact immune, 

endocrine and nervous systems (Combes, 2005).  Chemical exposure times may be different in 

vivo than an in vitro system due to differences in the rate of absorption into the cornea or 

conjunctiva. The in vivo cornea may provide a larger surface area for absorption than in vitro 

cells due to the presence of microvilli or absorption may be blocked by the presence of tear film 

components on the corneal surface. A chemical instilled in the eye may be diluted faster than the 

in vitro system due to the larger mass of cells available to absorb the chemical, both on the 

cornea and the conjunctiva, and by dilution due to the flushing of the eye by tears. Cornea and 

conjunctival cells may be at a different physiological state than in vitro cells and thus metabolise 

certain chemicals faster or slower. Removal of the chemical from the cells can be dependent on 
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the presence of capillary beds in the conjunctiva and diffusion and active transport in the cornea. 

In vitro systems do not have the mass of tissue for dilution or capillary beds for chemical 

removal. Immune responses are complex interactions between different cell types. Cell cultures 

can model single immune responses such as a release of an inflammatory cytokines, but cannot 

model the entire immune response.  Neurotoxins may not affect cells in a corneal epithelial in 

vitro model, but may have severe detrimental effects in the eye. 

 

1.7 Utilization of In Vitro Assays to Reduce the Use of Animals for Product Developement 

These fundamental differences between in vitro systems and in vivo systems support the use of a 

tiered testing strategy for the testing of ophthalmic chemicals. If a chemical is identified as being 

toxic in the in vitro test system it could be argued that the chemical may not be toxic in vivo due 

to differences in the ADME of an in vivo system vs. an in vitro system. ADME may help 

minimize the toxicity of a chemical. However, would a chemical that has a greater toxicity than 

BAK be considered for testing in animals due to the possibility of mitigation of this toxicity by 

ADME?   The uncertainty due to inter-individual variability in toxicokinetics has been given an 

uncertainty factor of 3.16 but may be adjusted for different routes of elimination and different 

groups within the population (Renwick and Lazarus, 1998).   Inter-individual differences related 

to toxicokinetics would cause uncertainty as to whether certain individuals could eliminate a 

toxic chemical before it exhibited its damaging effects. Thus, toxic chemicals, regardless of the 

ADME differences with in vitro models, should be eliminated from consideration prior to animal 

testing due to the variability between individuals in their abilities to eliminate chemicals from the 

tissue.  In a tiered testing strategy chemicals that are determined to be nontoxic in vitro are then 
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sent for animal testing. Therefore, the fact that an in vitro system does not have the complexity 

of the immune system or test for neurotoxicity is not an issue as this aspect of toxicity would be 

evaluated in vivo.  

 

The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants 

can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce 

the uncertainty associated with dose selection for clinical trials. Future development of new in 

vitro assays and their appropriate utilization can allow for the humane development of new 

ophthalmic products and provide tools for faster development of safe and effective products. 

 

The goal of this research was to develop an in vitro test battery that can be used to accurately 

predict the ocular toxicity of new chemicals and ophthalmic formulations. By comparing the 

toxicity seen in vivo animals and humans with the toxicity response in these new in vitro 

methods, it was demonstrated that these in vitro methods can be utilized in a tiered testing 

strategy in the development of new chemicals and ophthalmic formulations.   
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Chapter 2 

Sensitive Measures of Detecting the Effects of Chemicals and 

Contact Lens Care Solutions on Tight Junctions 

This work describes the use and development of an in vitro model to investigate the effects 

contact lens care solutions have on the barrier function of the cornea. The work was performed in 

conjunction with Dr. Ruy Tchao at the Philadelphia College of Pharmacy and was published in 

two articles (McCanna et al., 2008; Tchao, McCanna et al., 2002)
 
and was presented as posters at 

three international meetings (McCanna et al. 2005: McCanna et al. 2006; McCanna et al. 2007).  

I conducted the studies relating to the effect of BAK on the MDCK cells which were presented at 

the 4
th

 Annual University of Waterloo Graduate conference.  
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2.1 Introduction 

 

The mammalian eye has adapted mechanisms that protect the eye from damage. Humans before 

the modern age lived in environments that contained numerous hazards.  Dry environments blew 

dust or sand into the eyes causing irritation. Forest environments pose the continuous hazard of 

branches scraping the eye during travel through the brush and thicket.  Swimming in lakes and 

rivers could expose the eye to pathogenic organisms. Microorganisms on the skin could be 

transferred to the eyes causing infection.  These hazards were present throughout the evolution of 

humans and anatomical and biochemical adaptations occurred to counteract these threats to sight. 

Anatomical features for protection include the eye lids, the epithelial barrier of the cornea 

consisting of tight junctions, exfoliation (sloughing) of damaged cells, a protective tear film and 

the washing of the eyes by tears. At the ocular surface the eye has adapted to combat invading 

microorganisms (Evans et al., 2007).  There are molecules in the tear film that contain 

bactericidal agents, mucins that inhibit bacterial binding, and molecules for leukocyte 

recruitment at the site of infection (Haxlett, 2005). 

 

Modern day society has created additional hazards that can pose risks to the eye. In a recent 

study of the effects of rinsing the eyes with water containing chlorine, it was determined that 

chlorine was potentially harmful to the corneal epithelial barrier as measured by a significant 

increase in corneal fluorescein uptake in exposed eyes (Ishioka et al., 2008).  Cosmetic products 

or shampoos that could wash into the eyes by accident can cause breaks in the epithelial barrier 
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of the cornea and cause irritation (Cottin and Zanvit, 1997).  Contact lens cases can become 

contaminated by biofilms of microorganisms even when contact lens disinfecting solutions are 

used (Zhang and Ahearn, 2006; Pens et al., 2008; Boost et al., 2008).  These organisms can then 

be transferred to the eye via the contact lens and cause infection. Contact lenses have been 

shown to adhere to microorganisms. These adhered organisms can then invade the cornea 

causing serious eye infections (Ahearn et al., 2007; Imamura et al., 2008; Anger and Lally, 2008; 

Shoff et al., 2008, Patel and Hammersmith, 2008; Pinna et al., 2008; Margolis and Whitcher, 

2006)   Preservatives used in eye drops and disinfectants used in to disinfect contact lenses can 

cause breaks in the epithelial tight junctions (McCanna et al., 2008; Tchao et al., 2002; Imayasu 

et al., 2008; Chuang et al., 2008; Uematau et al., 2007; McCarey and Edelhauser, 2007). 
  

Corneal toxicity can also occur from topically applied and systemic medications (Nakamura et 

al. 2007, Fraunfelder, 2006; Ly et al., 2006).
 

 

 The presence of microorganisms on the surface of the eye will not necessary lead to corneal 

infection. In a study of the microbial flora of the eye of soft contact lens wearers it was found 

that positive cultures from the conjunctival cul-de-sacs of patients occurred that ranged from 

14.3% to 30.9% over the 6 month period of the study (McBride, 1979). 
  
The microflora of the 

eye resembled the microflora on the skin, indicating that the eye can be populated by 

microorganisms from the skin. Whether microorganisms enter the eye from the skin or from a 

contact lens, the defence mechanisms in the eye generally protect the cornea from infection 

(Levy and Orsborn, 2008).  However, microbial keratitis due to contact lens wear occurs.  In a 

recent study of microbial keratitis in Austrialia, the risk of infection with daily wear silicone 
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hydrogel contact lens was 11.9 per annualized incidence per 10000 lens wears and 1.9 for  daily 

wear soft contact lens wearers (Stapeton et al., 2008).
 
 In the United States one in 2500 daily 

wear contact lens users develop bacterial keratitis each year (Hazlett, 2005). 

 

 Microbial keratitis can result from infection with bacteria, fungi or amoebaes. The pathogenesis 

of Pseudomonas aeruginasa has been described and multiple risk factors and defence 

mechanisms are involved in this process (Evans et al., 2007; Angus et al., 2008; Fleiszig, 2006; 

Fleiszig, 2003).  In the recent outbreaks of infections related to contact lens products the cause of 

the Fusarium infections related to ReNu MoistureLoc
®

 was attributed to a lack of efficacy of the 

solution due to absorption of the antimicrobial component from the lens (Rosenthal et al., 2006) 

and growth and survival of Fusarium in dried MoistureLoc
®
 films in lens cases (Zhang et al., 

2006).   Imayasu et al. evaluated ReNu with MoistureLoc
®
 and three other contact lens 

disinfecting products on their effects on tight junctions (Imayasu et al., 2008).  There was no 

correlation between infection and solution effects on tight junctions.  After a 60 minute exposure, 

ReNu MultiPlus
®
 and Optifree

®
 Express

®
 showed widely opened junctions whereas cultures 

exposed to ReNu MoistureLoc
®
 showed only partially opened junctions, among other junctions 

that were tightly closed. The Acanthamoeba infections attributed to the use of Complete
®
 

MoisturePlus was possibly due to the ingredient propylene glycol which induced Acanthamoeba 

encystment and which made the organism more resistant to the disinfectants in the contact lens 

care product (Kilvington et al., 2008). The effect of Complete
®
 MoisturePlus on the corneal 

surface barrier function does not appear to be a risk factor in the Acanthamoeba infections. After 

a 15 minute exposure to human corneal epithelial cells, Complete
®
 MoisturePlus did not cause 
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breaks in the tight junctions (McCanna et al., 2008).
  
 In a recent article by Dutot et al. (2008) 

survey of the number of contact lens wears, type of infection and lens care solution used by 

patients was conducted. 
 
 For contact lens wearers 59% used multipurpose solutions and 35% 

used oxidative products such as peroxide. Of the contact lens wearers that had keratitis 80% used 

multipurpose solutions. Whether total antimicrobial effectiveness of the multipurpose solutions 

against microorganisms compared to peroxide or effects of these solutions on the barrier function 

were the cause of increased infections with multipurpose solutions was not determined.  

 

Levy and Orsborn evaluated the clinical risks of contact lens care products (Levy and Orsborn, 

2008).  Levy argues that “there is only one sight-threatening event related to contact lens wear – 

infectious keratitis”.   They also cited evidence that epidemiological studies conducted on lens-

related corneal infections 10 years apart show the same rates of infection. Over this 10 year 

period in the market the use of PHMB products increased with no increase in the incidence of 

microbial infection.  The two products that were recalled from the market for increasing the 

incident rate of infection contained unique ingredients that reduced the efficacy of the Alexidine 

and PHMB to the Fusarium solani and Acanthamoeba and was not attributed to solution 

cytotoxicity.  

 

As contact lens care manufactures increase the efficacy of their products against pathogenic 

microorganisms due to concerns of the lack of efficacy against Fusarium solani and 

Acanthamoeba, increased toxicity to the eye caused by these products could occur due to the use 

of higher concentrations of disinfectants or more potent antimicrobials that have deleterious 
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effects on biological membranes and cell organelles.   Increased toxicity could cause enhanced 

breaks in tight junctions and lead to infection.  Yi et al. (2000) determined that 

lippolysaccharides in gram negative organisms such as Pseudomonas aeruginasa induce the 

breakdown in the epithelial barrier of human corneal epithelial cells by targeting the ZO-1 and 

ZO-2 proteins.  Also, Fleiszig et al. (1997) found that corneal epithelial cells with intact tight 

junctions were significantly less susceptible to Pseudomonas aeruginosa infection than corneal 

epithelial cells with disrupted tight junctions. 
  
Thus, breaks in tight junctions may be precursors 

to invasion by virulent Pseudomonas into the cornea.  Kinnear evaluated the relative 

susceptibility of human keratocyte and corneal epithelial cells to Acanthamoeba castellani 

(Kinnear, 2004).  For both cell types the first observable sign of cell damage was cell shrinkage, 

with the formation of retraction of fibres and gaps.  Moore et al. (1991) evaluated the in vitro 

penetration of human corneal epithelium by Acanthamoeba castellanii and found that after initial 

adhesion the tight junctions break down and Acanthamoeba then penetrated the cell layer.   An 

animal model evaluated the infection of the abraded corneas with Acanthamoeba-laden contact 

lenses (Van Klink et al., 1993).  This study determined that corneal abrasion was necessary for 

the induction of Acanthamoeba keratitis in hamsters infected with contaminated contact lenses.  

Thus, resistance of the cornea to Acanthamoeba may be due to presence of tight junctions 

between cells and that breaks in tight junctions caused by contact lens disinfecting products 

could allow for Acanthamoeba to penetrate the cornea and cause keratitis.  

 

In addition to protection from infection, tight junctions also function to create a semi-permeable 

barrier preventing harmful chemicals from penetrating into the cornea.  The molecules that make 
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up the tight junctions sealing the cells together are the tansmembrane proteins claudin and 

occludin. The tight junction complex (zonula occludens) also contains membrane associated 

proteins ZO-1, ZO-1 and ZO-3 (Ban et al., 2003).
   

These tight junctions form in the most 

superficial layer of the cornea.  Saitau et al. (1998) discovered no significant differences in 

number or morphology of tight junctional strands between wild-type and occludin-deficient 

epithelial cells. 
   

Saitau hypothesised that there were other transmembrane proteins responsible 

for tight junctions. In 1998 Furuse et al. (1998) discovered a second class of transmembrane 

proteins and they were named claudins. 
 
 It is now believed that the claudins are the structural 

component of the tight junctions and the occludins are involved in a regulator function of these 

junctions (Ban et al., 2003). 
 
 The ZO-1, Z0-2, and Z0-3 proteins bind to the occludins or the 

claudins and also bind to the intracellular actin cytoskeleton (Ban et al., 2003).
  
Thus the actin 

filaments of adjacent cells are bridged together through the transmembrane proteins occludin or 

claudin with anchors to actin by the Z0-1, Z0-2 or Z0-3 proteins.  The interaction of these 

proteins with the actin cytoskeleton stabilizes the junctional structure and tightens the epithelial 

barrier (Ivanov, 2008). 
 

 

Chemicals that enter into the tear film do not always penetrate the cornea due to the tight 

junctional barrier. Damage to epithelial cells can occur at the surface. Because the surface cells 

are undergoing desquamation, damage to only surface cells may not cause major disruptions in 

corneal function. If however the cytotoxicity is high enough to kill the cells or disrupt the tight 

junctions, these toxic chemicals would be able to penetrate into the cornea causing damage to 

deeper cells.  These cells would include epithelial wing cells that migrate to the epithelial 
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surface, basal cells that are undergoing mitosis, keratocytes in the stroma and endothelial cells. 

Disrupting the normal physiology of these cells could cause corneal damage. 

 

If tight junctions remain intact harmful chemicals or drugs can enter the cornea only if they have 

the chemical structure to pass through the epithelial barrier. Hydrophilicity/lipophilicity ratio and 

molecular size are important properties that can determine penetration into the cornea.  

Chemicals can have two potential paths for penetration.  Passage is through the cell body 

(transcellular) or between the cell junctions (paracellular).  Lipophilic molecules preferentially 

pass via the transcellular route whereas hydrophilic molecules pass via the paracellular route 

(Zhang et al., 2004). 
  
In human eyes, bioavailability was predicted by Zhang et al. (2004) to 

range between 1% and 5% for topically applied lipophilic molecules and to be less than 0.5% for 

hydrophilic molecules.  The size limitation for the paracellular pathway is about 60 angstroms (6 

nm) which is the molecular size of glycerol (Lee, 1990).  
 
Permeation enhancers increase corneal 

uptake by drugs by modifiying the molecules in the tight junctional complex of the epithelium. 

Benzalkonium chloride (BAK) and ethylenediaminetetraacetic acid (EDTA), common 

ingredients in ophthalmic formulations, have shown a significant enhancement in corneal drug 

absorption (Audus et al., 1990). 
 
 Both chemicals have been shown to break down the tight 

junctions. BAK has been shown break tight junctions (Nakamura et al., 2007) and EDTA 

chelates calcium which loosens the tight junctions (Lee, 1990).   

 

In vitro models have been developed for detecting breaks in tight junctions caused by chemicals. 

In vitro models have employed the use of cell cultures on membranes as media, drugs and 
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chemicals can be exchanged from both the apical and basal membranes, whereas cells grown on 

plastic dishes exchange occurs only at the apical surfaces (Audus et al., 1990).   Using cell 

membrane inserts and a monolayer culture of MDCK cells, Tchao developed a cell culture model 

for detecting chemical damage to tight junctions (Tchao, 1988).  This model was proposed as an 

alternative to the Draize rabbit ocular irritation test. This in vitro assay has been used by several 

researchers and in industry to evaluate the ocular irritation potential of chemicals and product 

formulations (Tchao, 1988; Balls and Clothier, 1992; O’Connor et al., 1991; Shaw et al., 1990; 

Shaw et al., 1991; Martin and Stott, 1992). 
    

Validation studies evaluated the feasibility of using 

this method for predicting the ocular irritation of chemicals and found that it was useful for 

testing the irritation potential of cosmetic products containing surfactants (Gautheron et al., 

1994; Botham et al., 1997).   

 

A potential limitation of the using MDCK cells to measure damage to the corneal epithelium is 

that the cells used are of canine kidney origin, rather than human cornea.  These cells may not 

have identical membrane and cytoskeletal proteins as those expressed by the corneal epithelial 

cells.  Therefore, it was desirable to develop an assay using human corneal epithelial cells.  

Although several cytotoxicity studies have used primary or transfected human corneal epithelial 

cells (Balls et al., 1995;  Neville et al., 1996;  Tripathi et al., 1992; Kahn et al., 1993; 

Kruszewski et al., 1997; Offord et al., 1999; Huhtala et al., 2002) these assays have not been 

based on the functional characteristic of the corneal epithelium, namely the barrier function.  To 

develop the assay an immortalized human corneal epithelial cell line had to be found that formed 

tight junctions.  The human corneal epithelial cell line deposited in the ATCC culture collection 
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(Kahn et al., 1993; Hornof et al., 2005) has been determined to be limited for cytotoxicity assays 

due to virus shedding (Hornof et al., 2005).  Three additional immortalized human corneal 

epithelial cell lines have been developed.  These three cell lines are a human corneal epithelial 

cell line developed by SkinEthic, another developed by Clonetics and a third developed by 

Araki-Sasaki et al .(Araki-Sasaki et al., 1995 ; Becker et al., 2008).
 
  Using transepithelial 

resistance and transmission electron microscopy Toropainen et al. (2001) established that the 

Araki-Sasaki cell line could form tight junctions in culture.  

 

Using a sub-clone of the Araki-Sasaki cell line that formed good tight junctions we were able to 

develop a human corneal epithelial culture model that could be used to assess the effects of 

chemicals and product formulations on the barrier function.  In a recent article by Becker et al. 

(2008) the SkinEthic human corneal cell line did not form tight junctions whereas the cell line 

from Clonetics shows promise for use as it formed tight junctions in culture.
 

 

This work describes the use and development of an in vitro model to investigate the effect 

contact lens care solutions have on the barrier function of the cornea.  MDCK and HCEC lines 

were exposed to contact lens solutions. Using sodium fluorescein permeability and SEM the 

effect of these solutions on the tight junctions was determined. A study was also performed using 

the known ocular toxins SDS and BAK.  The breakdown in the tight junctions due to these 

chemicals was assessed after exposure of the cell monolayers to various chemical concentrations 

and exposure times. The cultures were assessed immediately after exposure and after 24 hours of 

recovery in growth media. To determine the relevance of these in vitro results a contact lens 
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wear study was performed in rabbits and the tight junctions of the corneas were evaluated using 

scanning electron microscopy.   

 

2.2 Materials and Methods 

 

2.2.1 Comparison of Contact Lens Multipurpose Solutions by In Vitro Sodium Fluorescein 

Permeability Assay Using MDCK Cells 

 

All lens care solutions were purchased from commercial sources and were used within their 

labeled expiration dates. Madin-Darby canine kidney cells were obtained from American Type 

Culture Collection (Manassas, VA), ATCC#CCL34, and maintained in minimum essential 

medium (MEM) (BioWhittaker, Walkersville,MD) (MEM) supplemented with 10% bovine calf 

serum with iron supplementation. 

 

2.2.1.1 Sodium Fluorescein Permeability Assay 

A 0.5-mL cell suspension containing 2x10
5
 cells was seeded in Millicell HA 13-mm inserts 

(Millipore, Bedford, MA). The inserts were transferred into 24-well plates containing 0.5 mL of 

MEM per well. The plates were then incubated at 37°C with 5% CO2 for 6 days. Fresh media 

was added to the wells on days 2 through 6.  On day 6 the inserts were used for the permeability 

assay. 
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Each insert was gently rinsed three times with 1 mL of Hanks’ balanced salt solution (HBSS) 

using a 10-mL syringe, without a needle. An amount of 0.5 mL of test solution was added to 

separate inserts that had been placed in a fresh 24-well plate. Triplicate inserts were used for 

each test solution. The inserts were incubated in a 100% humidified chamber at 37°C.   

 

ReNu MultiPlus
®

 (Bausch & Lomb, Rochester, NY), SOLO-care
®

 (CIBA Vision), Complete
®

 

Comfort Plus (Allergan, Irvine, CA), OPTIFREE
®

 Express
®

 with Aldox (Alcon, Ft. Worth, TX) 

solutions were incubated for 20 minutes.  

 

Boston
®

 SimPlus Multi-Action Solution, Alcon Unique
®

 pH Multi-Purpose Solution, Optimum
®

 

by Lobob were incubated for 15 minutes.  

 

Sodium Dodecyl Sulphate (SDS) and Benzalkonium chloride (BAK) controls were tested at 

various exposure times and temperatures.  SDS and BAK were purchased from Sigma Chemical 

Co. (St. Louis MO).  

 

Each series of triplicate samples was handled sequentially to allow exact timing of the treatment 

and subsequent steps. After incubation, each insert was individually rinsed five times with 1 mL 

HBSS using a 10-mL syringe (without a needle), and then placed in a fresh 24-well plate 

containing 0.5 mL HBSS in each well. To each insert was added 0.5 mL of sodium fluorescein (3 

mg/100 mL in HBSS). The inserts were incubated at room temperature for 20 minutes and   

removed from the wells, and the amount of sodium fluorescein was measured using a 
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fluorometer at 485 nm excitation and 530 nm emission. Triplicate negative controls (HBSS 

solution) and positive controls consisting of sodium dodecyl sulphate (SDS) in water (50-1000 

µg/mL were included during these evaluations. 

 

Boston
®

 SimPlus Multi-Action Solution, Alcon Unique
®

 pH Multi-Purpose Solution, Optimum
®

 

by Lobob, Sodium Dodecyl Sulphate (SDS) and Benzalkonium chloride (BAK) controls were 

evaluated for 24 hour recovery. After reading in the fluorometer as indicated above the inserts 

were rinsed with HBSS and were transferred into 24-well plates containing 0.5 mL of MEM per 

well and 0.5 mL of MEM was placed on top of each well. The plates were then incubated at 

37°C with 5% CO2 for 24 hours. At 24 hours the inserts were rinsed with HBSS and 0.5 mL of 

sodium fluorescein (3 mg/100 mL in HBSS) was added to each insert. The inserts were 

incubated at room temperature for 20 minutes, removed from the wells, and the amount of 

sodium fluorescein was measured using a fluorometer at 485 nm excitation and 530 nm 

emission. 

 

2.2.1.2  Scanning Electron Microscopy 

The MDCK cell monolayers used in permeability assays were fixed in 2% glutaraldehyde in 

phosphate-buffered saline (PBS) for 2 hours at room temperature. The inserts were then 

transferred to PBS and kept at 4°C until processed for dehydration. After dehydration with 

graded ethanol, from 50% to 100%, the inserts were immersed in hexamethyldisylazane for 10 

minutes, removed, and then air dried in a fume hood. Samples were sputter-coated with gold and 

examined with a Hitachi (San Jose, CA) S530 scanning electron microscope. 
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2.2.2 Use of a Human Corneal Epithelial Cell Line for Screening the Safety of Contact Lens 

Care Solutions In Vitro 

 

2.2.2.1 Chemicals and Solutions. 

 The lens care solutions OPTIFREE
®

 Express
® 

Multi-Purpose Disinfecting Solution (Alcon, Ft. 

Worth, TX), ReNu MultiPlus
®
 Multi-Purpose Solution (Bausch & Lomb, Rochester, NY), 

SOLO-care
® 

Plus with Aqualube Multi-Purpose Solution (CIBA Vision, Duluth, GA), 

Complete
®
  Moisture Plus™ Multi-Purpose Solution (AMO, Santa Ana, CA), and  Aquify

®
 5 

Minute Multi-Purpose Solution (CIBA Vision, Duluth, GA) were purchased from commercial 

sources and were used within their labeled expiration dates.  Other chemicals were obtained from 

Sigma (St. Louis, MO) unless otherwise stated. 

 

2.2.2.2 Culture Conditions.  

 The medium used to culture human corneal epithelial cells (HCEC) cells is as follows: 50/50 

Ham's F12/Dulbecco' modified Eagle's medium(Mediatech, Inc, Herndon, VA), 10% heat-

inactivated fetal bovine serum, (Atlanta Biological, Lawrenceville, GA), 5 μg/ml insulin, 0.1 

μg/ml cholera toxin, 10 ng/ml epidermal growth factor, and 50 μg/ml gentamycin.  Cells were 

incubated at humidified 37°C and 5% CO2 .  Cultures were maintained with weekly subculture 

using trypsin/EDTA at a ratio of 1:6 and fed every 2-3 days.  
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2.2.2.3 HCEC Cloning. 

  The original human corneal epithelial cell line shows a heterogeneous population of cells.  A 

suspension of low density of cells was seeded in several plastic Petri dishes. After cell adhesion, 

several single cells were identified and isolated with cloning cylinders.  The isolated cells were 

observed daily and those that developed into colonies with typical epithelial morphology were 

selected for feeding and removal with trypsin/EDTA and cultured in separate T-25 flasks.  A 

clone with epithelial morphology was again cloned and used as subsequent culture for further 

studies.    

 

2.2.2.4 Transepithelial Resistance. 

  A cell suspension (0.5 ml) containing 2x10
5
 cells was seeded in Millicell HA 13-mm inserts 

(Millipore, Bedford, MA ).  The inserts were transferred into 24-well plates containing 0.5 ml of 

growth medium per well. The plates were then incubated at 37 C with 5% CO2.  Transepithelial 

resistance was measured using the EVOM instrument (World Precision Instruments, Sarasota, 

FL). 

 

2.2.2.5 Transmission (TEM) and Scanning Electron Microscopy  (SEM). 

  Cells grown on plastic cover slips were fixed in freshly prepared phosphate-buffered saline 

(PBS)-buffered 2% glutaraldehyde (Electron Microscopy Sciences, Fort Washington, PA) for 2 

hours at room temperature and transferred to PBS and kept at 4°C.  For TEM, the specimens 

were post-stained with osmium tetroxide (Electron Microscopy Sciences, Fort Washington, PA).  
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After standard graded dehydration with ethanol, the specimens for SEM were placed in 

hexamethyldisilazane for 10 minutes and then air-dried overnight.  For TEM, the specimens 

were embedded in epon and sectioned at 0.1-micron thickness and floated onto Formvar
TM

-

coated grids, and stained with uranyl acetate, dehydrated in graded ethanol, and viewed with a 

Zeiss EM10 electron microscope.  For SEM, the dried specimens were sputter-coated with gold 

and viewed with a Hitachi S530 scanning electron microscope.  Based on preliminary 

observations under light microscopy, the cultures were fixed for SEM at 10 minutes after 

treatment of cultures with various solutions.  

 

2.2.2.6 Sodium Fluorescein Permeability Assay.  

 A cell suspension (0.5 ml) containing 2x10
5
 cells was seeded in Millicell HA 13-mm inserts 

(Millipore, Bedford, MA).  The inserts were transferred into 24-well plates containing 0.5 ml of 

growth medium per well.  The plates were then incubated at 37 C with 5% CO2 for six days.  

Fresh media was added to the wells on days two through six.  On day six the inserts were used 

for the permeability assay.  Each insert was gently rinsed three times with 1 ml of HBSS using a 

10-ml syringe without a needle.  Test solution (0.5 ml) was added to each individual insert which 

had been placed in a fresh 24-well plate.  Triplicate inserts were used for each test solution.  The 

inserts were incubated in a 100% humidified chamber at 37
o
 C for 15 minutes.  Each series of 

triplicate samples was handled sequentially to allow exact timing of the treatment and 

subsequent steps.  After incubation, each insert was individually rinsed five times with 1 ml 

HBSS using a 10-ml syringe (without a needle), and placed in a fresh 24-well plate containing 

0.5 ml HBSS in each well.  Sodium fluorescein (0.5 ml; 3 mg/100 ml in HBSS) was added to 
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each insert.  The inserts were incubated at room temperature for 20 minutes, removed from the 

wells, and the amount of sodium fluorescein was measured using a fluorometer (Perkin Elmer, 

Norwalk, CT) at 485 nm excitation and 530 nm emission.  Triplicate negative controls (HBSS 

solution) were included during these evaluations. 

2.2.2.7 Statistical Analysis.  

Statistical procedures were performed using analysis of variance.  

 

2.2.3 The Effect of Two Contact Lens Care Solutions on the Ocular Surface 

The rabbits were treated at a contract research facility. The fixed eyes were then sent to the 

Philadelphia College of Pharmacy for scanning electron microscopy evaluation.  

New Zealand white rabbits wore balafilcon A contact lenses for 2 hours that were soaked 

overnight in OptiFree
®

 Express
®

 or ReNu MultiPlus
®

 contact lens disinfecting solution.  

Rabbits’ eyes that were not treated with contact lenses were used as controls. Two rabbits were 

evaluated for the each test solution and the controls. The lenses were removed from the eyes 

after 2 hours and the eyes were fixed with 2% glutaraldehyde in PBS for Scanning Electron 

Microscopy. The corneas were removed and processed through graded ethanol, air dried, sputter 

coated with gold and examined in a Hitachi S530 Scanning Electron Microscope. 

2.3 Results 

2.3.1 Comparison of Contact Lens Multipurpose Solutions by In Vitro Sodium Fluorescein 

Permeability Assay Using MDCK cells 
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The effect of SDS and HBSS on an MDCK epithelial cell monolayer is shown in Figure 1. An 

increase in sodium fluorescein permeability was observed after the monolayer was exposed to 

SDS at concentrations greater than 50 ug/mL. Physiologic changes in these epithelial monolayers 

were observed using scanning electron microscopy (SEM) when compared with a HBSS control. 

A monolayer exposed to HBSS remained intact, the epithelial cells were closely apposed to each 

other, and they exhibited tight junctions (Fig. 2). The cell surface exposed to HBSS had 

numerous microvilli, which indicated a healthy epithelial cell monolayer. Monolayers exposed to 

SDS demonstrated a breakdown of tight junctions and cell membrane damage, as the 

concentration increased from 50 to 1000 µg/mL (Figs. 3–9).  After a SDS treatment of 50 µg/mL 

(Fig. 3), the monolayer and the cells appeared similar to the HBSS control. At 75 µg/mL 

concentration (Fig. 4), the monolayer began to detach in small groups, and gaps between cells 

were observed. At 125 µg/mL (Fig. 5) and 150 µg/mL (Fig. 6), there was an increase in the 

number of gaps between the cells and marked damage to the cell membranes. At 200 µg/mL 

concentration (Fig. 7) debris from lysed cells was observed on the support membrane. At 500 

ug/mL (Fig. 8), a greater number of cells were detached from the support membrane; 

furthermore, in areas where there were attached cells, the cells were predominately separated 

from each other. At 1000 µg/mL (Fig. 9), the support membrane was covered with a layer of 

dead cells and cell debris. A comparison of the effect of contact lens care products on sodium 

fluorescein permeability of a MDCK epithelial cell monolayer is presented in Figure 10. There is 

no significant difference (P > 0.05) between ReNu and ReNu MultiPlus (Bausch & Lomb, 

Rochester, NY), SOLO-care (CIBA Vision), and Complete Comfort Plus (Allergan, Irvine, CA) 

solutions.  Additionally, sodium fluorescein permeability associated with these solutions was not 
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significantly different from the HBSS negative control (P > 0.05). OPTIFREE Express with 

Aldox (Alcon, Ft. Worth, TX) solution was significantly more damaging to the MDCK 

epithelium (P < 0.05) than all of the other lens-care solutions and the negative HBSS control. 

OPTIFREE Express Mutli-Purpose Solution was significantly more damaging to the MDCK 

epithelium (P< 0.05) than ReNu Multiplus, and ReNu multipurpose solution (Bausch & Lomb, 

Rochester, NY), SOLO-care (CIBA Vision, Duluth, GA) and Complete Comfort Plus (Allergan, 

Irvine, CA) multipurpose solutions. The physiologic effect of each contact lens care solution on 

tight junctions and the MDCK epithelial cell membranes, as observed by SEM, are shown in 

Figures 11 to 16. Cells cultures exposed to OPTIFREE Express with Aldox showed a definite 

loss of tight junctions, damaged cell membranes, loss of microvilli, and the appearance of 

membrane blebs and folds (Fig. 11).  OPTIFREE Express solution showed loss of tight junctions 

and cell membrane damage (Fig. 12).  Cell cultures exposed to ReNu (Fig. 13), ReNu MultiPlus 

(Fig. 14), SOLO-care (Fig. 15), and Complete Comfort Plus (Fig. 16) appear to have similar 

tight junctions and intact cell membranes, when compared to the HBSS negative control (Fig. 2). 

 

2.3.2 Comparison of the Safety of Rigid Gas Permeable Contact Lens Solutions 

 

 

The effect of Boston
®

 SimPlus Multi-Action Solution, Alcon Unique
®

 pH Multi-Purpose 

Solution, Optimum
®

 by Lobob, SDS and HBSS on an MDCK epithelial cell monolayer is shown 

in Figure 17. An increase in sodium fluorescein permeability was observed after the monolayer 

was exposed to the Alcon Unique
®

 pH and the Optimum
®

 by Lobob solutions p < 0.05. At 24 

hours recovery the cultures exposed to Optimum
®

 by Lobob did not recover.  Using SEM the 
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damage caused by the Alcon Unique
®

 pH and the Optimum
®

 by Lobob solutions could be seen 

Figure 18.  Optimum by Lobob caused significantly more damage to the monolayer than the 

other solutions tested.  

 

2.3.3 Evaluation of the Effect of Chemical Concentration, Exposure Time, Temperature and 

Dissolution Vehicles Have on the Permeability of an Epithelium 

 

The sodium fluorescein permeability assay showed dose response up to 100 ppm (0.01%) BAK  

after the 30 minute exposure and a dose response for 24 hour recovery at all concentrations 

(Figure 19).  The drop in the values between 100 ppm and 200 ppm is likely due to the binding 

of BAK to the filter and blocking the penetration of fluorescein.  When cultures were exposed to 

SDS the effects increasing the time of exposure resulted in higher permeability at 24 hours of 

recovery after initial exposure (Figure 20 and Figure 21). Cultures exposed to 0.025% SDS at 37 

degrees after 24 hours of recovery showed significantly greater permeability to sodium 

fluorescein than the cultures exposed at room temperature (Figure 22). Cultures exposed to 

0.025% SDS in HBSS were more permeable to sodium fluorescein than cultures exposed to 

0.025% SDS in water or saline Figure 23.  

 

2.3.4 Use of a Human Corneal Epithelial Cell Line for Screening the Safety of Contact Lens 

Care Solutions In Vitro 

To verify appropriate corneal structure of the newly cloned human corneal epithelial cell line, 

scanning electron microscopy was used. The original colony of cells showed heterogeneity, 

without a consistent cornea like structure (Fig. 24A). However, by using the techniques 
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described earlier, substantially greater culture homogeneity was achieved (Fig. 24B); this human 

corneal epithelial cell line was used in all subsequent studies and forms the basis for the 

screening assay described herein. As shown by transmission electron microscopy, these cells 

possessed well-developed organelles and microvilli at the apical surface (Fig. 25A). There was 

some degree of cell overlapping and multilayering of cells. Furthermore, tight junctions were 

clearly present at the apical membranes of adjacent cells (Fig. 25B). Under the scanning electron 

microscope (Fig. 26), the cells showed close juxtaposition and ridged membranes, further 

showing the presence of tight junctions. Finally, as anticipated, these cells showed the 

development of electrical resistance after several days of culture (Fig. 27), providing further 

evidence of the generation of functional tight junctions. Using this characterized cell line, 

preliminary experiments were next conducted with various marketed contact lens care solutions 

to explore their effects on the culture system. By using phase microscopy, the effect of 15 

minutes of solution exposure to the cells was evaluated. HBSS treatment resulted in normal cell 

structure and no apparent visual effect on the integrity of the cellular monolayer (Fig. 28A). 

Likewise, treatment with ReNu MultiPlus resulted in microscopic images (Fig. 28B) that were 

indistinguishable from the HBSS-treated cultures, with normal cellular structure. In sharp 

contrast, 15 minutes of exposure to OPTI-FREE Express (Fig. 28C) resulted in a distinct 

separation of the cells that was readily visible in all cultures, along with a clustering of some 

cells.  

 

The effect of these products on corneal tight junctional integrity was also assessed by using the 

sodium fluorescein permeability assay (Fig. 29). There was no significant difference in 
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fluorescein permeability among HBSS-treated controls, ReNu MultiPlus, SOLO-care Plus With 

Aqualube, AQuify 5 Minute, and Complete Moisture Plus. However, OPTI-FREE Express was 

significantly more damaging to the human corneal epithelial cells, with significantly greater 

sodium fluorescein permeability (approximately twice the control values) compared to all other 

products tested. To verify the structural correlates of these biochemical changes in the assay 

system, the physiologic effect of each contact lens care solution on tight junctions and the human 

corneal epithelial cell membranes, as observed by scanning electron microscopy, was determined 

(Fig. 30). Cell cultures exposed to OPTIFREE Express showed a definite loss of tight junctions, 

damaged cell membranes, loss of microvilli, and the appearance of membrane blebs and folds 

(Fig. 30A). In contrast, cell cultures exposed to ReNu MultiPlus (Fig. 30B), SOLO-care Plus 

With Aqualube (Fig. 30C), Complete Moisture Plus (Fig. 30D), and AQuify 5 Minute (Fig. 30E) 

appeared to have similar tight junctions and intact cell membranes when compared to the HBSS 

negative control (Fig. 30F). Cultures treated with Complete Moisture Plus (Fig. 30D) and 

AQuify 5 Minute (Fig. 30E) showed slight breaks in the monolayer, which were insignificant 

compared to those seen in cultures treated with OPTI-FREE Express (Fig. 30A). 

 

2.3.5 The Effect of Two Contact Lens Care Solutions on the Ocular Surface (In vivo Rabbit 

Cornea).  

Untreated Control: The corneal epithelial cells appear very flat of squamous morphology (Figure 

31).  There were some cells with lighter appearance, representing more superficial cells.  The 

center of the photo shows debris, possibly a sloughed off cell.  At higher magnification (Figure 
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32)  it shows that the superficial cells have "lesions" on the cell membrane.  These "lesions" 

(Figure 33) appear to be cell membrane blebs, not a "hole" in the membrane.  

 

ReNu MultiPlus®-lens treatment: The cornea (Figure 35) shows morphology very similar to the 

untreated control cornea, compare with photo (Figure 31).  There are very occasional sloughing 

of superficial cells revealing the underlying epithelium (Figure 36) and (Figure 37), compare 

with photo (Figure 32).  Higher magnification (Figure 34) shows detail of the cell membrane 

with microvilli and tight junctions.    

 

OptiFree® Express®-lens treatment:  Shows distinct sloughing of large patches of cells in 

(Figure 38). The left side of the picture shows flat squamous cells and as the cells slough off, the 

appearance is that on the right side of the picture.  The exposed underlying cells show prominent 

cell nuclei and cell junctions.  However, in some areas, the cell junctions may not be as "tight" as 

shown in picture (Figure 39).  Cells in the upper middle show detachment from their neighbors.  

The loss of cell junctions is very clear at higher magnification as in picture (Figure 40).   
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FIG. 1. The effect of sodium dodecyl sulfate (SDS) on a Madin-Darby canine kidney (MDCK) cell epithelial cell monolayer culture 

(n_3) (magnification x 1000). 

 

 

     
 

FIG. 2. Scanning electron micrograph (SEM) view of   FIG. 3. SEM of MDCK cell monolayer culture exposed  

MDCK cellmonolayer culture exposed to Hanks’ balanced to 50 µg/mL sodium dodecyl sulfate (SDS) 
 salt solution (HBSS) (magnification X 1000).     (magnification X 1000). 

 

 
Figures 1-3 Reprinted with Permission Tchao, McCanna et al.  Eye and Contact Len.  2002.   
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Figures 4-9  Reprinted with Permission Tchao, McCanna et al.  Eye and Contact Lens. 2002. 
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Figures 10-14 Reprinted with Permission Tchao, McCanna et al.  Eye and Contact Lens. 2002. 
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Fig. 15. SEM of MDCK cell monolayer culture  Fig. 16.  SEM of MDCK cell monolayer culture exposed to  

 exposed to SOLO-care solution ( magnification X 1000 Complete Comfort Plus solution (magnification  X 1000) 

 

Figures 15-16  Reprinted with Permission Tchao, McCanna et al.  Eye and Contact Lens.  2002. 

 

 

 

Figure 17.  The effect of Boston
®

 SimPlus Multi-Action Solution, Alcon Unique
®

 pH Multi-Purpose Solution, 

Optimum
®

 by Lobob SDS and HBSS on an MDCK epithelial cell monolayer using the fluorescein permeability 

assay after a 15 minute exposure.   * indicates significant differences as compared to control (p < 0.05). 
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Figure 18. SEM of MDCK cell monolayers after exposure to Boston
®

 SimPlus Multi-Action Solution, Alcon 

Unique
®

 pH Multi-Purpose Solution, Optimum
®

 by Lobob SDS and HBSS for 15 minutes.  (magnification X 1000) 
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Figure 19.  The effects of various concentrations of BAK in BS on a MDCK monolayer after 30 min 

exposure and 24 hours of recovery.  100 ppm = 0.01%.  * indicates significant differences as compared 

preceding dose (p < 0.05) 

 

 

 
 

Figure 20.  The effect of exposure to 0.05% SDS in HBSS on a MDCK monolayer at different exposure 

times.  * indicates significant differences as compared to preceding exposure time.  
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Figure 21. . The effect of exposure to 0.05% SDS in HBSS on a MDCK monolayer at different exposure times.  * 

indicates significant differences as compared to preceding exposure time.  

 

Figure 22. The effect of temperature on sodium fluorescein permeability. MDCK monolayers were exposed to 

0.025% SDS in HBSS for 30 min. Readings were taken after exposure and after recovery (24 hours later). * 

indicates significant differences as compared to room temp recovery.    
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Figure 23. The effect 0.025% SDS prepared in different diluents on the MDCK monolayer after 20 min. exposure. * 

indicates significant differences as compared to other diluents.  
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Figure 24. Phase contrast light microscopy (A) The original human corneal epithelial cells show two distinct 

populations: epithelial cells (*) and fibroblast cells (#). On the upper left are cells showing an epithelial structure, 

whereas the center and lower right portions show a fibroblastic structure.  The bar represents 24 µm.  (B) After 

cloning to select the epithelial cell type, the culture showed a uniform characteristic epithelial structure. The bar 

represents 24 µm.  Reprinted with Permission McCanna et al.  Eye and Contact Lens. 2008. 
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Figure 25. (A) Transmission electron microscopy of cross-sections of the human corneal epithelial cells. Some 

degree of stratification of cells is seen.  These cells have short microvilli at the apical surface and evidence of tight 

apposition of the membranes.  The cell nucleus often contains several darkly stained nucleoli.  The bar represents 

4µm.  (B) Higher magnification shows the presence of tight junctions (*) at the apical surface of cells.  In addition, 

the cells contain desmosomal and adherent junctions (#), which are typical of epithelial cells.  The bar represents 

0.8µm. Reprinted with Permission McCanna et al. Eye and Contact Lens.  2008. 
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Figure 26. Scanning electron microscopy of human corneal epithelial cells. These cells are closely juxtaposed with 

each other, and the ridges between cells represent tight junctions.  The bar represents 6 µm.  Reprinted with 

Permission McCanna et al. Eye and Contact Lens.  2008. 
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Figure 27. The development of resistance by human corneal epithelial cells cultured in Millicell HA inserts, 

measured daily from the third day after seeding the inserts with 0.5 mL of 2 X 10
5
/mL cells. The open and closed 

circles represent two separate sets of cultures of four inserts each (R1 and R2).  The inverted triangles represent the 

resistance of blank inserts without cells.  The error bars represent the standard deviations of resistance measurements 

from four inserts. Reprinted with Permission McCanna et al.  Eye and Contact Lens. 2008. 
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Figure 28. Phase contrast light microscopy. Incubation of human corneal epithelial cells for 15 minutes with Hank’s 

Balanced salt solution (A), ReNu MultiPlus (B), and OPTI-FREE Express (C). Parts A and B are similar to each 

other, suggesting no damaging effect of ReNu MultiPlus on cells.  Part C  shows cell separation and clustering, 

indicating some damage to the cells.  The bar in each part represents 24 µm.   Reprinted with Permission McCanna 

et al.  Eye and Contact Lens. 2008.  
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Figure 29.  The  results of sodium fluorescein permeability measurements on cultures after 15 minute treatment of 

human corneal epithelial cells with various solutions.  The results represent three separate experiments and are 

expressed as a percentage of the permeability of cultures in Hank’s balanced salt solution.  The greater percentages 

of permeability compared to Hank’s balanced salt solution represent the loss of integrity of the corneal epithelium.  

The highest effect was shown by incubating the cultures with OPTI-FREE Express, suggesting toxicity to the cells. 

Reprinted with Permission McCanna et al.  Eye and Contact Lens. 2008. 
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Figure 30.  Treatment of human corneal epithelial cells (A) Scanning electron micrographs of OPTI-FREE Express-treated cells. Loss of 

microvilli and development of clusters on cell membranes are seen in many cells. There are also fissures among the apposing cells in the 

monolayer, suggesting the loss of tight junctions. Areas marked with an asterisk show that adjacent cells have actually separated from the 

monolayer, with some intercellular adhesion bridges remaining. The bar in each figure represents 18µm. (B) Scanning electron micrograph of 

ReNu MultiPlus-treated cultures.  The cells show essentially a similar structure to Hank’s balanced salt solution-treated cultures. (C) Scanning 

electron micrograph of SOLO-care Plus with Aqualube-treated cultures; similarity to part F is noticeable. (D) Scanning electron micrograph of 

Complete Moisture Plus Multi-Purpose Solution treated cultures; similarity to part F is noticeable. (E) Scanning electron micrograph of Aquify 5 

minute-treated cultures; similarity to part F is noticeable. (F) Scanning electron micrograph of Hank’s balanced salt solution-treated cultures, 

representing a negative control without treatment.  The cells show close adherence to each other, and tight junctions are seen as raised ridges 

between two juxtaposed cells.  The microvilli are distinct on the cells’ surfaces.  Reprinted with Permission McCanna et al. Eye and Contact 

Lens. 2008. 
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Figure 31. SEM Untreated Control. Rabbit   Figure 32. SEM Untreated Control. Rabbit 

cornea.       cornea. 

 

  

Figure 33. SEM Untreated Control. Rabbit  Figure 34. SEM ReNu MultiPlus-lens  

cornea.      ment cornea. Rabbit cornea. 
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Figure 35. SEM ReNu MultiPlus-lens            Figure 36. SEM ReNu MultiPlus-lens  

treatment.  Rabbit cornea.         treatment. Rabbit cornea.   

  

   

 Figure 37.  SEM ReNu MultiPlus-lens       Figure 38. SEM Optifree Express-lens treatment. 

treatment. Rabbit cornea.        Rabbit cornea. 
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   Figure 39. SEM Optifree Express-lens                      Figure 40. SEM Optifree Express-lens  

   treatment. Rabbit cornea.              treatment. Rabbit cornea.  
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2.4 Discussion 

The sodium fluorescein permeability assay using either Madin-Darby canine kidney cell line or a 

human corneal epithelial cell line can be used to detect the loss of tight junctions caused by 

chemicals or product formulations. Using scanning electron microscopy this work confirmed that 

there is a correlation between sodium fluorescein permeability and disruption in the tight 

junctions between the epithelial cells exposed to sodium dodecyl sulphate and contact lens care 

disinfecting products.  Using BAK we showed that evaluating the monolayers 24 hours after 

recovery will detect potential delayed effects on the cells and is helpful in assessing high 

concentrations of chemicals as it may take time for viscous chemicals to pass through a 

membrane filter.  Light microscopy also showed disruption in the cell monolayers.  To verify the 

relevance of the in vitro results we evaluated the corneal surface of rabbit cornea after exposure 

to contact lenses soaked in contact lens care solutions.  The contact lens care solution that 

showed the most permeability to sodium fluorescein also showed the most damage to the rabbit 

cornea.  

 

There are other methods that are being used by researchers to detect disruptions in the tight 

junctions of the cornea.  In vivo, the integrity of this corneal barrier can be assessed by 

measuring the electrical resistance across the tissue (Uematau et al., 2007; Klyce, 1972) by 

evaluating its permeability to sodium fluorescein (Maurice, 1967), or caboxyfluorescein 

(McCarey and Edelhauser, 2007), and by assessing breaks in corneal junctions using scanning 

electron microscopy of fixed tissue (Uematau et al., 2007, Tonjum, 1975, Burstein, 1980).   

Confocal microscopy of fixed cornea with stained immune-fluorescent secondary antibody to 
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monoclonal anti-ZO-1
 
was done to evaluate

 
the toxicity of fourth-generation fluoroquinolone 

antibiotic solutions on the rabbit corneal epithelium (Ly et al., 2006).
  
Two recent reviews of 

clinical confocal microscopy (Patel and McGhee, 2007; Zhivov et al. 2006) do not mention the 

use of this technology for assessing the tight junctions of the cornea.  Two articles were 

published in 2008 in addition to McCanna et al. that also assessed the effect of contact lens care 

solutions on tight junctions. Both investigations used the Araki-Sasaki cell line but did not clone 

the cell line to select for epithelial structure. The cultures used would have contained a mixture 

of both epithelial-like and fibroblastic-like cells.  Imayasu et al. (2008) evaluated tight junction 

integrity with transepithelial electrical resistance and Z0-1 labelling of the monolayer and 

confocal microscopy.  Chuang et al. (2008) evaluated tight junction integrity by fluorescein 

permeability and ZO-1 and occludin labelling. These studies showed that contact lens care 

solutions can break the cell junctions.  In the investigations (McCanna et al., 2008; Tchao et al., 

2002)
 
described here, shorter exposure times were used than those by the prior investigators.  

The relevance of exposure time depends on the duration of exposure to the contact lens care 

solution after lens insertion.   

 

It was desirable to develop a sodium fluorescein permeability assay using human corneal 

epithelial cells.  This study carried out and described above showed the successful isolation and 

usefulness of a clone of human corneal epithelial cells with a typical and homogeneous epithelial 

cell structure from a heterogeneous cell line originated by using SV-40 transfection to 

immortalize primary cultures of human corneal epithelial cells. Ryeom et al. (2000) showed the 

presence of tight junctions in the original heterogeneous culture system.  Tight junction 
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characteristics were also shown in the clone derived in the current study and when cultured in 

Millicell inserts, develop electrical resistance. Therefore, this cell line maintains an important 

characteristic of healthy human corneal epithelial cells.  In previous studies, multilayered 

epithelium of human corneal epithelial cells has been cultured to form at the air–liquid interface 

(Kruszewski et al., 1997) or as organoid cultures (Zorn-Kruppa et al., 2004).  A organotypic 

culture of human corneal epithelial cells that includes the trigeminal nerve has also been 

produced (Suuronen et al., 2004).  These cultures have been developed to mimic the cornea, but 

the endpoints used are still cell viability. Furthermore, these cultures are expensive, complicated, 

difficult to maintain, and variable. Therefore, for the purpose of determining the function of an 

epithelium and screening agents for their effect on the cornea, a simplified monolayer, such as 

that developed in the current study, may be preferable. 

 

Human corneal epithelial cells have been used in several in vitro cytotoxicity assays from as 

early as 1986 (Nevelle et al., 1986).  These previously described methods involve endpoints of 

cell viability that may represent downstream effects after corneal damage or loss of function.  In 

terms of the cornea, an essential function of the outermost layer of the squamous epithelium is 

the barrier function.  Loss of barrier function may or may not involve loss of cell viability. The 

loss of tight junctions in the corneal epithelium could certainly lead to the sensation of irritation 

or provide an opening for virulent micro-organisms to establish and infection.  Therefore the 

development of a corneal assay with an endpoint of cellular permeability represents a sensitive 

and relevant assay, particularly for characterizing compounds with low toxicity. 
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By using this cell line and assay conditions, various contact lens care solutions were tested. The 

culture of these cells use fetal bovine serum in a conventional medium, so these cells may 

represent metabolic states different from those of the in vivo human corneal epithelial cells. 

However, testing of solutions was performed in the absence of culture medium, so the response 

observed at the cell membrane may represent the in vivo conditions. The loss of tight junction 

functions in vitro, as determined by the sodium fluorescein permeability, represents the effect of 

test agents on a cell monolayer rather than a stratified corneal epithelium consisting of several 

layers of epithelial cells. However, it has been shown in vivo that the integrity of the outermost 

epithelium is important in determining the irritancy of chemicals in the eye (Klyce, 1972; Ban et 

al., 2003; Marsh and Maurice, 1971; Throft and Friend, 1975). As described earlier, most of the 

solution regimens produced innocuous effects on cellular structure and tight junction integrity in 

this test system.  However, the OPTI-FREE Express solution stood out as being significantly 

more damaging to human corneal epithelial cells. These data are consistent with previous 

observations using MDCK cells (Tchao et al., 2002), but the relevance of these observations is 

even more significant given the improvements in the assay conditions and the correlation to the 

effects on the tight junctions that occurred when contact lenses soaked in OPTI-FREE were 

applied to the corneas of rabbits in vivo.   
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Chapter 3 

Using the Optical Quality of the Bovine Lens as a Sensitive Measure of 

Assessing the Ocular Toxicity of Chemicals 

This work describes the use of an in vitro model that evaluates toxicity thresholds evaluating 

changes in the organs functionality.  It was performed partly in conjunction with Dr. Sivak and 

Dr. Bantseev and was published in an article and poster presentation. However, the descriptions 

and interpretations concerning this approach as given here are my own.  In addition I carried out 

the multiple instillation study.   
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3.1 Introduction 

In vitro models for determining the ocular irritation potential of chemicals and product 

formulations have been proposed for use with immortalized cell lines, primary cells or organ 

cultures.  These models detect toxicity by evaluating the effects either at the molecular level by 

assessing changes in cell physiology, or by evaluating effects on the functionality of the cell 

layers or organs.  Determining the effects chemical have on cell organelles or chemical reactions 

within the cell can be helpful in assessing the relative toxicity of chemicals. However, there is 

uncertainty regarding the relevance of these molecular toxicity endpoints as predictors of toxicity 

in vivo.   Toxicity will occur if the concentration of a chemical is high enough for a long enough 

duration to cause damage. Because of the capacity of cells and organs to heal through 

biochemical detoxification, cellular repair, cell division and cell replacement, toxicity will only 

occur if the concentration and duration of contact exceed the body’s capacity for detoxification 

and repair.  

 

There are two types of in vitro assays: assays that evaluate the change in the molecules or 

organelles of a cell or, assays that evaluate effects on an organ function. In vitro assays that 

measure effects at the molecular level in cells can detect toxic effects from chemicals at various 

concentrations. Because cells and tissues have the capacity for repair, the relevance of these 

effects need to be assessed.  One way to assess the relevance of molecular in vitro assays is to 

test chemicals at concentrations of known toxicity in animals and in humans and determine if the 

new chemicals have toxic responses that are equal to the magnitude of these chemicals. If the 
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tested concentration of the new chemical has effects that are equal to or greater than that of a 

known toxin, this is grounds for concern and should be considered in the safety assessment. 

Reducing the concentration of the chemical to a non-toxic dose would be required.  

 

Another way to assess relevance is to use an in vitro model that evaluates the effect of the toxin 

on the functionality of an organ.  If the tested chemical does not impact the organ’s functionality, 

then the concentration of the chemical used did not exceed the organs capacity to repair itself.  If 

however, the functionality of the organ does change, this is an indication that the molecular 

damage exceeded the capacity for repair and thus a reduction in the concentration to a dose 

below the level that affects the functionality of the organ would be required.  

 

 An in vitro assay that can be used to reduce the level of uncertainty in predicting the safe 

concentrations of new chemicals in product formulations is the Scantox™ assay that measures 

the effect of toxic chemicals on the ability of the bovine lens to focus light. The use of a scanner 

to measure optical quality of a cultured lens was first described by Sivak in 1983 (Sivak and 

Dovrat, 1983).   Sivak developed an updated laser system with software for measuring the 

change in the light focus (Sivak et al., 1986).  The modern system is called Scantox™and has 

been used to measure the toxicity of chemicals and product formulations (Dovrat and Sivak, 

2005).
  
  The optical quality (focus or lack of focus) is measured using a scanning laser beam and 

video monitor operated by computer software.  
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The use of the ScanTox™ system has advantages over cell culture and other assays with 

endpoints based on organ functionality.  This assay utilizes the bovine lens.  Many cell culture 

assays utilize immortalized human cells since primary human corneal epithelial cells only 

undergo a limited number of cell divisions. Immortalized cells may not retain the same 

physiology of the initial cultured cells as the process of immortalization resulting from DNA 

insertions may affect some cellular processes. Cultured corneas are also utilized but culturing 

corneas for extended periods of time is difficult to do and can lead to significant degradation in 

the organs functionality implying that the culturing alone is causing enough damage at a 

molecular level to cause irreparable toxicity.  The bovine lens however retains its functionality in 

culture, thus it is uniquely a primary organ culture that is relatively unaffected by dissection and 

culturing conditions. The measurement made by the ScanTox is non-destructive in that laser does 

not damage the tissue. Other assays typically utilize dyes or reagents that are toxic to the tissue 

and prevent further analysis after a reading is obtained. Also because of the non-destructive 

nature of the reading using the ScanTox and the ability to culture the bovine lens for weeks, the 

toxicity of a chemical can be measured for delayed effects and the organ can be monitored over 

time for recovery from toxic injury. In addition, multiple instillation studies can be performed 

with the bovine lens as the lens tissue can be monitored after each instillation as ScanTox allows 

for non-invasive measurements to be taken.  

 

A potential limitation of evaluating the bovine lens is that these cells may not have identical 

membrane proteins, cytoskeletal proteins, metabolism, or cell life cycle as human in vivo corneal 

epithelial cells.  This limitation however also exists for human primary or immortalized cell 
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cultures and cultured animals cells.  In vitro test cultures will have some differences in 

physiology than in vivo human corneal cells due to culturing conditions, changes in the DNA 

from the natural state and difference between the physiology of human and animal corneas.  The 

corneas of in vivo animals also are not physiologically identical to human corneas. Thus all 

toxicology models have a degree of uncertainty of prediction of toxicity due to these 

physiological differences. When choosing toxicity models it is the goal of the toxicologist to 

choose the test system that minimizes the potential physiological differences between the test 

tissue and human physiology.  The rationale for choosing bovine lens is that the cells are from 

ocular origin and the cells are primary cells that have not been modified from the initial in vivo 

condition.  Embrylogically and physiologically, the epithelium of the lens is similar to the 

epithelium of the cornea.  Also, the culturing conditions for the bovine lens do not change its 

functional state.  Bovine lenses are cultured in an M199 medium instead of aqueous humour. 

However, there is no change in the optical quality of the bovine lens cultured in the M199 

medium
 
(Sivak et al., 1990).  The optical quality of the lens can be maintained up to 37 days 

indicating that the cells are under a low stress condition where cellular viability is maintained 

(Sivak et al., 1990). 

 

This investigation evaluated the use of the ScanTox for assessing the ocular irritation of 

ophthalmic chemicals.  The ScanTox™ system is the only in vitro assay that can measure 

toxicity over an extended period of time without the use of viability dyes.  By utilizing the laser 

scanner the effect of a toxin can be assessed multiple times over the course of weeks.  This 



 

 73 

technology enables the development of an in vitro assay that can assess for recovery from injury 

and assess the toxic effects of multiple daily instillations of ophthalmic formulations.  

 

3.2 Materials and Methods  

3.2.1 Bovine Lens as an In Vitro Model of Ocular Toxicity single and multiple instillation 

3.2.1.1 Chemicals and reagents. 

 Culture medium (M199), sodium bicarbonate, agarose, L-glutamine, NaCl, SDS, BAK, 

Hydrogen Peroxide and NaOH were purchased from Sigma Chemical Co. (St. Louis, MO).   

HEPES, penicillin, streptomycin, and dialyzed fetal bovine serum were obtained from Gibco-

BRL (Burlington, ON, Canada). 

 

3.2.1.2 Eye dissection. 

 Bovine eyes obtained from a local abattoir were opened under sterile conditions and the lenses 

were removed. To minimize physical handling of lenses (i.e., transfer from the culture plate and 

then to the chamber for scanning) they were immediately placed into a three-part chamber (see 

Analysis of the Lens Optical Properties below) containing 25 ml of culture medium (M199) 

supplemented with 21 mM HEPES, 26 mM sodium bicarbonate,0.7 mM L-glutamine, 7 mM of 

NaOH, 100,000 units penicillin and 100 mg streptomycin, and 3% dialyzed fetal bovine serum 

and incubated at 37°C with 4–5% CO2.  After 24 h lenses exhibiting mechanical damage during 

dissection, as evaluated by the visible opacities, were discarded. 
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3.2.1.3 Treatment Sodium Dodecyl Sulftate 

 Lenses were exposed to SDS (0.1 to 0.00625%) for 30 min. by submerging the lens in 10 mL 

solution in a 50 mL polypropylene conical tube, rinsed with saline (0.9% NaCl), placed in fresh 

M199 and incubated at 37°C and 4–5% CO2.  Scanning was performed before exposure, 

immediately, 4, 8, and 24 h after the treatment. 

 

3.2.1.4 Hydrogen Peroxide 

Bovine lenses were exposed to H2O2 (3.0, 0.3, 03%) for 15 minutes by submerging the lens in 40 

ml of solution in a 50 mL polypropylene conical tube, rinsed  with saline (0.9% NaCl) and M199 

and incubated in culture medium at 37°C and 4–5% CO2.  Scanning was performed 4, 8 and 24 

hours after treatment. Additional scans were performed daily until the 8
th

 day of incubation.  

 

3.2.1.5 BAK Multiple Instillation 

Lenses were exposed to BAK (0.01%) for 15 min. submerging the lens in 40 ml of solution in a 

50 mL polypropylene conical tube, rinsed with saline (0.9% NaCl), placed in fresh M199 and 

incubated at 37°C and 4–5% CO2. The single instillation group was maintained in culture 

medium after initial exposure.  The multiple instillation group was exposed for 15 min. 

immediately after the 24, 48, 72 hour scans.   Scanning was performed 4, 8 and 24, 48 and 72 

hours after initial instillation.  AlamarBlue reading of the lenses occurred 24 hours after the 72 

hour exposure time.  
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3.2.1.6 Measurement of lens optical properties.  

The optical quality (Back vertex distance variability) was assessed using the Scantox™ system. 

The Scantox™ system consists of a collimated laser that projects the beam to a plain mirror 

mounted at 45° on a carriage assembly. This mirror reflects the laser beam directly up through 

the scanner table surface and through the lens under examination.  A digital camera views the 

position of the laser beam.  The data is analysed and is used to calculate the back vertex distance 

variability (BVD) for each position and the difference in that measurement between beams. 

Lenses were placed in 25 ml of M199 into a specially designed three-part chamber made of 70 

mm tall square glass tube, silicone rubber insert, and a metal base (modified from Weerheim and 

Sivak, 1992) and suspended within the chamber on a 14-mm inner diameter bevelled washer 

designed to support the lens at the equatorial rim.  A series of 22 laser beams were passed 

through the lens at specified increments of 0.5 mm for a total range of 11 mm.  

 

3.2.1.7 AlamarBlue Assay 

Lenses were exposed to BAK (0.01%) for 15 min submerging the lens in 40 ml of solution in a 

50 mL polypropylene conical tube, rinsed with saline (0.9% NaCl), placed in fresh M199 and 

incubated at 37°C and 4–5% CO2.  The single instillation group was maintained in culture 

medium after initial exposure. For the multiple instillation group exposure was repeated at 24, 48 

and 72 hours after the initial exposure. After 24 hours of recovery from the third exposure to 

BAK the lenses were removed from M199 and rinsed with 0.9% saline.  Each lens was then 

placed anterior side down into 1mL of 8% alamarBlue solution in M199 made without serum in 

a well of a 12 well plate.  The lenses were then incubated at 37°C and 4–5% CO2 for 2 hours.  
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After incubation the lenses were removed and fluorescence of the solution was read at 530 

excitation and 590 emmision using a CytoFluor II fluorescence multi-well plate reader 

(PerSeptive Biosystems Inc., Framingham, MA, USA) 

. 

 

3.2.1.8 Statistical analysis.  

Statistical calculations were completed for SDS treatment using a two-way repeated measures 

ANOVA or one-way ANOVA. A probability value of less than or equal to 0.05 was considered 

significant. Statistical calculations for the H202 and BAK treatments were completed using a one-

way ANOVA.  

 

3.3 Results 

3.3.1 Bovine Lens as an In Vitro Model of Ocular Toxicity 

 

3.3.1.1 SDS Treatment 

 The optical quality as measured by back vertex distance variability did not change for the 

control lenses.  However, there was a significant increase in the BVD variability associated with 

SDS treatment. A 2-fold increase in BVD variability was evident in the 0.1% SDS group lenses 

as early as the 0 h (Immediately after treatment) scan point. The 0.1% SDS treated lenses showed 

a BVD variability that was statistically different (p < 0.0001) at all timepoints. The 0.05%, 

0.025% and 0.0125% were statistically different from the control for at least two timepoints (p < 
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0.05) . The lowest concentration of SDS 0.00625% was statistically different from the controls at 

the 24 hour reading (p < 0.05) (Table 1, Figure 1).  

3.3.1.2 Optical Properties after in Vitro Hydrogen Peroxide treatments 

Bovine lens treatment with H2O2 resulted in a concentration and time dependent loss of sharp 

focus (Fig. 2).  The optical quality of the bovine lenses treated with 3.0% H2O2 showed a 

substantial increase in BVD variability compared to control lenses after 4 hours. An increase in 

BVD variability did not occur for the 0.3 % H2O2 treated lenses until 24 hours after treatment. 

Lenses treated with 0.03% hydrogen peroxide showed only a slight increase in BVD variability 

after 7 days of incubation.  

 

3.3.1.3 Optical Properties and metabolic activity after in Vitro BAK treatments 

The optical quality measured by BVD variability of lenses treated with a single treatment and 

multiple treatments of 0.01% BAK were different from control lenses after 24 hours (Fig. 3).  

Lenses treated with multiple treatment showed a greater average BVD variability than lenses that 

only received a single treatment (48 and 72 hours).  The lenses were incubated another 24 hours 

in M199 and a cell viability measure was taken using alamarBlue. There was a significant 

difference in the viability between the lenses that received multiple treatments with 0.01% BAK 

and the lenses that received only a single treatment (Fig.  4) in that the alamarBlue fluorescence 

of the single treatment lenses were much greater than the alamarBlue fluorescence obtained from 

the lenses that were treated with multiple treatments.  
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TABLE 1 

 

 

List of Back Vertex Distance Variability (Loss of Sharp Focus, BVD Variability, mm) ± SEM 

Bovine Lenses Treated with Different SDS Concentrations Over Time 

 

SDS treatment (%) 

 
Scan Point 0.1 

(n = 14) 

0.05 

(n = 15) 

0.025 

(n =16) 

0.0125 

(n = 11) 

0.00625 

(n = 11) 

Control 

(n = 17) 

Initial 0.42 ± 0.05 0.30 ± 0.02 0.39 ± 0.03 0.39 ± 0.03 0.40 ± 0.05 0.33 ± 0.02 

0 h 0.85 ±0.16** 0.42 ± 0.04 0.50 ± 0.05 0.35 ± 0.03 0.45 ± 0.05 0.34 ± 0.04 

4 h 0.93 ± 0.23** 0.51 ± 0.05* 0.48 ± 0.05 0.61 ± 0.05* 0.43 ± 0.03 0.34 ± 0.03 

8 h 0.947 ± 0.13** 0.47 ± 0.03 0.60 ± 0.05* 0.53 ± 0.05* 0.43 ± 0.05 0.33 ± 0.02 

24 h 0.952 ± 0.14** 0.64 ± 0.04* 0.75 ± 0.10** 0.92 ± 0.09** 0.66 ± 0.06* 0.34 ± 0.02 

 

*Indicates significant loss of sharp focus at p ≤ 0.05 as compared to controls 

** Indicates significant loss of sharp focus at p < 0.0001 as compared to controls 

0h is immediately after treatment, Reprinted with Permission Bantseev, McCanna et al. 

Toxicological Sciences. 2003.  

 

 
 

Figure 1.  Back vertex distance variability (loss of sharp focus, BVD variability, mm) ± SEM in 

bovine lenses treated with different SDS concentrations (%) over time (Same data as in table 1) 
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Figure 2.  Optical response over time of the cultured bovine lenses following H202 (3, 0.3 and 

0.03%) treatment for 15 minutes.  * indicates significant differences as compared to the other 

concentrations and control.  
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Figure 3. Back vertex distance of bovine lenses after single and multiple instillation of 0.01% BAK. 
 

 
 

Figure 4.  AlamarBlue reading after treatment. This figure shows the fluorescence of bovine lens epithelium after 

single and multiple instillation of 0.01% BAK.  All lenses were tested after 4 days of incubation with the multiple 

instillation receiving three days of treatments of BAK during this time period. * indicates significant differences as 

compared to controls (p < 0.05).  
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Table 2. Modified Maximum Average Scores (ECETOC, 1998) 

 

 1 Day 2 Day 3 Day 

3% Sodium Dodecyl 

Sulphate 

16 5.6 1 

1% Hydrogen 

Peroxide 

25.8 23.25 10.5 

15% Sodium 

Dodecyl Sulphate 

59.1 33.6 19 

5% BAK 

 

83.8 62.5 57.25 

 

 

Table 3. Modified Maximum Average Scores (ECETOC, 1998) 

 

 1 hour 1 Day 2 Day 3 Day 

100% Methyl 

Cyanoacetate,   

10 27.6 22.6 21.3 

100% 2,6 

Dichlorobenzoyl 

chloride 

8 23.8 21.6 21.6 
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3.4 Discussion 

3.4.1 ScanTox™ Assay 

In order to assess the toxicity of chemicals and product formulations a model was developed by 

Sivak using the cultured bovine lens (Sivak and Dovrat, 1983; Sivak et al., 1986; Dovrat and 

Sivak, 2005; Bantseev et al., 2008).   Bovine lens cells are ocular cells that originate from the 

same germinal or embryonic source of the surface ectoderm as the cornea (Ho et al., 2008).   The 

lenses are maintained in culture so the cells are in a state of normal homeostasis and are not in an 

unusually stressed condition.  The lenses can be monitored for up to 37 days
 
(Sivak et al., 1990) 

for optical quality so recovery and delayed toxicity effects can be measured.  The laser scanner 

provides a non-destructive assessment of the health of the bovine lens organ culture so multiple 

readings can be performed on the same treated lens throughout the duration of the experiment.  

 

An in vitro system that can measure for recovery and delayed effects is critical for assessing the 

toxicity of chemicals.  In Draize rabbit ocular irritation studies the measurements of irritation of 

the cornea, iris and conjunctiva are performed at various time intervals after instillation.  Typical 

readings occur after 1 hour or 4 hours of instillation and at additional intervals of at least 24, 48 

and 72 hours. Table 2 lists Draize Modified Maximum Average Scores (MMAS) for 3% Sodium 

Dodecyl Sulphate, 15 % Sodium Dodecyl Sulfate, 1% Hydrogen Peroxide and 5% BAK at 

observations after instillation of 1, 2 and 3 days after instillation (ECETOC, 1998).  The relative 

toxicity of these three solutions are 5% BAK > 15% SDS >1% Hydrogen Peroxide > 3% SDS  

based on the MMAS score and the time of recovery.  In addition to recovery from initial injury, 

delayed toxicity effects also must be identified by an in vitro test system.    In Table 3 100% 
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Methyl Cyanoacetate, 100% 2,6 Dichlorobenzoyl chloride exhibited higher MMAS scores at the 

1, 2, and 3 day observation periods compared to the 1 hour observation, indicating that the 

toxicity response to these two chemicals were delayed in that the maximum scores obtained 

occurred  at least a day after the 1 hour observation period (ECETOC, 1998).  Toxins with 

delayed effects were also reported by Sina (Sina, 1994). 
 

 

The ScanTox™ system was used in this study to evaluate the ocular irritants SDS, hydrogen 

peroxide and BAK.   As already noted, bovine lenses were exposed to SDS (0.1 to 0.00625%) 

for 30 minutes and to H2O2 (0.03%to 3%) and BAK (0.01%) for 15 minutes.  Using a laser 

scanner it was determined that a significant change from the controls occurred for the lenses 

exposed to 0.1 % SDS for all observation points (0, 4, 8 and 24 hours) and as low as 0.00625% at 

the 24 hour observation point.   Exposure to H2O2 at 0.3% and BAK at 0.01% showed toxicity 

after 24 hours.  A study performed by Youn et al. (2004) using the ScanTox also showed that 

0.01% SDS and 0.01% BAK were toxic to the lens after a 15 min exposure.  No toxicity was 

detected at concentrations of BAK of 0.001% (Youn et al., 2004).   

 

3.4.2 In Vitro Cornea Toxicity models 

Other than the bovine lens assay the only other assays that evaluate functionality as an endpoint 

for toxicity for an organ culture of ocular origin are assays that evaluate cultured corneas or 

enucleated whole eyes. The bovine corneal opacity and permeability assay evaluates the effects 

of chemicals on the ability of the cornea to maintain clarity and function as a permeability barrier 

(Gautheron et al., 1992).  The rabbit enucleated eye test also tests for changes to corneal clarity 
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and permeability but also measures corneal swelling (Prinsen and Koeter, 1993).  Bovine corneas 

have been shown to be cultured for up to three weeks when the appropriate culturing conditions 

are made (Foreman et al., 1996).  These corneas can be under low stress but the culturing 

conditions are complex and it is difficult to assure the quality of the corneas obtained from a 

slaughter house.  In one study that used bovine corneas, the damage due to transport of the 

corneas from the slaughter house was minimized by transporting complete cow heads cooled to 4 

degrees C prior to dissection (Frentz et al., 2008).  Using a viability dye and confocal 

microscopy it was determined that the corneal endothelium following 7 days of organ culture 

demonstrated occasional areas of endothelium devoid of cells  together with some dying cells 

(Foreman et al., 1996). 
   

A method that has been used to assess the quality of bovine corneas has 

been to test for epithelial integrity with fluorescein staining (Frentz et al., 2008).  The 

endothelium appearance is evaluated by visualizing the endothelium appearance from the back of 

the chamber and lactate production of the cornea is measured. However, in an investigation of 

the quality of the corneas used in the BCOP assay using the destructive dyes trypan blue and 

alizarin red it was determined that 20% of the endothelial cells were damaged due to the 

wrinkling of the corneas when placed in the BCOP holder (Ubels et al., 2000).  Thus the damage 

to the endothelium cells could cause variability in test systems that use bovine corneas. Using the 

bovine lens however, the quality of the dissected lens can be determined easily using the non-

destructive measure of determining the optical quality of the lens. Thus the elimination of the 

variability due to the use of poor quality of tissue is a major advantage of using the bovine lens 

over the use of cultured corneas for toxicity studies.  
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Bovine, porcine and rabbit corneas have tested effects of chemicals on corneal function including 

effects on maintaining clarity and maintenance of the barrier function.  Not knowing if the 

corneas are damaged prior to starting a study limits its usefulness and difficulty in culturing can 

limit testing of chemicals for recovery or delayed effects.  With these limitations corneas have 

been tested for toxicity using SDS and BAK with measurements taken up to 4 days, to measure 

for recovery.  In a study using bovine corneas SDS did not cause opacity at concentrations that 

were considered to be severe irritants (Gautheron et al. 1992).
  
After a

 
30 minute exposure 

fluorescein permeability was detected at concentrations of 0.5% SDS  (Gautheron et al. 1992).
  
  

Porcine corneas were exposed to various concentrations of SDS for 2 minutes (Xu et al., 2004).  

1% and 3% SDS caused breaks in the epithelium that recovered after 4 days whereas after 

treatment with 15% SDS the epithelium did not recover.   Abraded bovine corneas were treated 

with 24 drops of various doses of BAK (0.0001% -0.1% BAK in hyaluronate citrate and calcium 

containing artificial tears) applied every hour (Foreman et al., 1996).
   

Concentrations as low as 

0.001% BAK prevented healing from the mechanical abrasions after 4 days and 0.01% BAK 

caused marked destruction of the epithelium, as measured by staining with fluorescein.  

 

3.4.3 Prediction of Human Toxicity 

Acute, sub-chronic and chronic in vivo toxicology studies are performed where animals are 

dosed with progressively higher concentrations in order to determine the threshold of toxicity. 

The highest dose that does not cause an observable toxicity and the lowest dose where there is an 

observable toxicity are found.  In between the no-observable-effect level (NOAEL) and the 

lowest-observable effect level (LOAEL) is the threshold of toxicity.  
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 There is a level of uncertainty in the results obtained in animal studies as a prediction of human 

toxicity thresholds. A standard practice of accounting for this uncertainty is the use of safety 

factors. Safety factors take into account interspecies variability, intraspecies variability, and 

additional factors based on the quality of data and duration of testing performed (FDA, 2002, 

Renwick, 2004).  After finding the NOAEL in mg/kg/day the value is divided by appropriate 

safety factors.  For systemic exposures safety a factor of 10 to account for interspecies variability 

and a factor of 10 to account for intraspecies variability is typical (Renwick, 2004). 

 

Standard safety factors for topically applied drugs, disinfectants or preservatives to the cornea 

have not been established. However, to support human trials, the US FDA requests that the 

dosing frequency, drug concentrations and study duration in nonclinical studies should be at least 

equal and preferably exceed the maximum frequency, concentration and duration of clinical 

human studies (FDA, 2002).  Testing doses higher than clinical dose in animal studies is needed 

due to the interspecies variability.  Appropriate dose response studies are helpful in establishing 

safe concentrations.   Knowing the safety margins make it possible to maximize product 

formulations by using the most effective dose with acceptable margins of safety. 

 

With the use of safety factors the uncertainty of the toxicity of a chemical can be addressed by 

using clinical doses that are less concentrated than the NOAEL or LOAEL.  For contact lens 

disinfecting products and preservatives used in ophthalmic products large safety factors can be 

difficult as the chemicals have to be at sufficient concentrations to kill micro-organisms. Also, 
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the typical in vivo study for FDA approval is only a sub-chronic study with duration of 21 days 

for contact lens products and 28 days for eye drop products. Using sub-chronic data to predict 

chronic use requires additional safety factors to account for the uncertainty of extrapolating a 21 

day or a 28 day study to the chronic use of eye drops or contact lens care products.   

 

It is clear that due to the interspecies variability, intraspecies variability and the uncertainty of 

using subchronic testing to predict the toxicity of chronic use, using animal studies alone to 

assess the potential safety of disinfecting and eye drop products is not sufficient. Clinical studies 

reduce the uncertainty as the interspecies uncertainty is eliminated from the calculation. 

However, it is not ethical to use humans as the primary model for determining safe 

concentrations of chemicals in product formulations and even for critically ill patients the 

benefits to the patient must seriously be considered before dose escalation studies are preformed 

(Daugherty, 1999).  It is also important to minimize the use of high dose studies in animals as 

these studies can cause pain and suffering. Therefore, in order to reduce the uncertainty of the 

safe doses to use in product formulations and to ethically develop novel product formulations in 

vitro testing is essential for determining the chemical concentrations that can be tested in clinical 

investigations. 

 

 Due to uncertainty in correlating animal data to human data as to the NOAEL or LOAEL and 

the threshold of toxicity in between, what should be the appropriate safety factors used to 

determine the safe concentration to use in a human clinical trial?  Other microscopic techniques 

have been used to assess toxicity of BAK at the cellular level. Scanning electron microscopy of 
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treated rabbit corneas to drops containing 0.01% BAK, shown that the BAK is very injurious to 

the cornea of rabbits (Pfister and Burnstein, 1976).  After thirty minutes of exposure most of the 

top layer of cells desquamate and microvilli are lost on the lower layers. Benzalkonium chloride 

was applied to rabbit and cat corneal epithelium at concentrations between 0.001% and 0.01% 

and the corneas were evaluated by scanning electron microscopy (Burnstein, 1980).  Initial 

toxicity was detected at 0.0025% and corneas exposed to higher concentrations showed 

increased toxic effect.  An evaluation of fluoroquinolone antibiotics containing BAK at a 

concentration of 0.005% instilled at least 4 times a day for 7 days demonstrated that these 

products showed a significant decrease in epithelial thickness after 7 days of exposure (Kovoor 

et al., 2004).  A recent study by Ly et al. showed that a fourth generation fluoroquinilone with 

0.005% BAK compromised the tight junctions of the cornea whereas another fluoroquinilone 

that did not contain BAK left the tight junctions intact (Ly et al., 2006). 
 
 Ichijima et al. evaluated 

in vivo rabbit corneas after exposure to BAK drops at 0.02%, 0.01% and 0.005% BAK using 

tandem scanning confocal microscopy and SEM (Ichijima et al., 1992).  The application of 

0.005% BAK caused superficial epithelial cells to swell and desquamate. In a study that 

evaluated 0.004% BAK and 0.005% BAK instilled in rabbit eyes both as a solution and with use 

as a RGP contact lens care solution, there was significant increases in desquamation of the 

superficial corneal epithelium and tear lactate dehydrogenase activity compared with control 

eyes after 3 weeks of treatment (Imayasu et al. 1994).  Thus, when using SEM or confocal 

microscopy to study rabbit corneas exposed to BAK, the threshold for toxicity is approximately 

0.005%. This is very similar to the toxicity of BAK detected using the ScanTox™ method which 
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detected BAK toxicity at 0.01% BAK but not at 0.001% BAK.  Thus the toxicity threshold for 

BAK was accurately detected by the ScanTox™ method as being between 0.01% and 0.001%.  

 

Benzalkonium chloride (BAK), is a preservative used in ophthalmic products and is used at an 

average concentration of 0.01% (range 0.004%–0.02%) in topical multidose solutions (Noecker 

et al., 2004).  In human clinical studies biopsies of conjunctivae and trabeculums of patients who 

were treated with eye drops containing 0.01% BAK were abnormally infiltrated by cells 

expressing inflammatory or fibroblastic markers (Baudouin et al. 1999).  Chronic users of 

glaucoma drops containing BAK showed increased secretion by conjunctival cells of pro-

inflammatory cytokines (Malvitte et al., 2007).  Exposure to preserved timolol at 0.005% BAK 

caused an unstable pre-corneal tear film and it disrupted the epithelial barrier function more than 

the unpreserved control solution in human patients (Takeshi et al. 2003).  Dry eye patients 

treated with polyvinyl pyrrolidone preserved with BAK at 0.005% showed an increase in corneal 

epithelial permeability (Gobbels and Spitznas, 1992).  These studies show that the toxicity 

threshold in humans is approximately 0.005% BAK.  

 

Using available data on the toxicity of BAK we can assign an appropriate safety factor. Because 

the ScanTox™ assay is a sensitive assay the threshold toxicity values detected were closer to the 

true toxicity value so a smaller safety factor can be used than that suggested by other methods 

that are less sensitive.  The ScanTox™ assay correlated to toxicity thresholds detected using in 

vivo confocal microscopy and scanning electron microscopy of rabbits exposed to various 

concentrations of BAK (between 0.001% and 0.01%).  Human clinical studies have also detected 
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toxicity with use of preserved eye drops at a BAK concentration of 0.005%.  Using sensitive 

measures for detecting toxicity using in vitro, in vivo animal and in human patients there does 

not appear to be significant variability in the estimates for toxicity. Therefore the NOAEL in 

vitro and in vivo animals of 0.001% BAK should approximate the NOAEL in humans. Because 

BAK is used in eye drops in the range of 0.004%–0.020%, a concentration of 0.001% BAK, 

depending on the formulation is a good starting point for a new product formulation. Other 

factors such as preservative efficacy at 0.001% and adequate drug penetration into the cornea 

need to be considered. Disruption of the cornea due to BAK toxicity is required in order for some 

drugs to penetrate through the epithelial barrier (Kaur and Kanwar, 2007).  Concentrations of 

BAK should be as low as possible since sensitive human individuals who already have 

compromised epithelium due to disease such as dry eye could have their condition exacerbated 

by BAK in the formulation (Baudouin, 2008).   
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Chapter 4 

Measurements of Mitochondrial Integrity to Determine Early Stage Toxicity 

of Chemicals and Contact Lens Care Solutions 

 

This chapter is partly based on three articles that describe the use of the confocal microscope to 

assess toxicity of chemicals (Bantseev, McCanna et al., 2003; Bantseev, McCanna et al., 2007; 

Bantseev, McCanna et al., 2008).    These articles were a collaborative effort. I contributed to the 

study design, data interpretation and in the preparation of the manuscript.  In addition, I carried 

out all of the studies related to the use of the bovine lens epithelium and human corneal epithelial 

cells to evaluate the toxicity of contact lenses that were soaked in contact lens solution products.  

I also carried out all of the studies that evaluated the use of the human corneal epithelial cell line 

to assess the toxicity of solutions.   
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4.1 Introduction 

Molecular biology methods for assessing changes to cells after exposure to toxins can be very 

helpful in determining potential mechanisms of toxicity. These methods are very sensitive and 

can detect changes at concentrations that may not cause clinically observable pathological 

findings. Although the chemical concentrations that cause physiological changes in cells may be 

below the concentration threshold that causes clinical pathological effects, cell and molecular 

techniques can be used to assess the potential toxicity of chemicals and also estimate clinical 

toxicity thresholds. In order to correlate molecular assay results to clinically observed thresholds, 

chemicals with known toxicity thresholds can be run as positive controls. The changes caused by 

novel chemicals or product formulations at the cell or molecular level can then be compared to 

these positive controls to determine the relative effects.  

 

 Whether a chemical concentration is identified as exhibiting in vivo pathological effects can 

depend on the technique used to measure these effects.  In humans the typical clinical 

assessments using macroscopic observations, patient subjective symptoms and slit-lamp 

microscopy may not detect damage that is occurring at the sub-clinical level. Although this sub-

clinical damage may not initially present itself to the clinician, after repeat use of the product for 

many days or months the damage may increase to the level where a clinical observation of 

pathology is detected.  Human tests have been developed that are potentially more sensitive than 

traditional observations of ocular irritation. Assessments of the tear film of patients and in vivo 

clinical confocal microscopy have been used to assess corneal health (Patel et al., 2007; Malvitte 
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et al., 2007).  The Draize test for assessing ocular irritation by observing for changes in the 

cornea, conjunctiva and iris has been used as an in vivo (rabbit) test for years (Draize et al., 

1944).  This test has been criticized for its lack of sensitivity (Bantseev et al., 2008).  More 

sensitive measures using confocal microscopy and scanning electron microscopy for assessing 

damage to the ocular tissue have been used (Burnstein N., 1980; Ly et al., 2006).  A chemical 

concentration that was determined to be non-toxic using traditional methods for assessing 

toxicity in human clinical studies or in rabbits using the Draize test may later be determined to be 

toxic using more sensitive measures for assessing effects or may be identified as toxic after 

chronic use of the product. Thus, a clinical toxicity threshold for a chemical is the concentration 

that causes measurable toxicity using the most sensitive measures for detecting toxic effects after 

chronic use of a product. 

 

One sensitive measure of determining toxicity in vivo has been the assessment of the cornea 

using the in vivo confocal microscope.  The corneal epithelium, Bowman’s layer, corneal stroma, 

corneal endothelium and the conjunctiva can all be imaged by the in vivo confocal microscope 

(Patel et al., 2007; Messmer et al., 2006).  Observations of corneas of patients that wore contact 

lenses include the presence of mucein balls that may penetrate the corneal epithelium (Millar et 

al., 2003), reduced keratocyte density (Efron, 2007), and a greater number of  Langerhans cells 

observed in the layer of the sub-basal nerve plexus (Zhivov et al., 2007). These observations 

were not classified as clinical pathological observations. However, if in the future there is a 

correlation with later onset of disease these observations would become clinically relevant. Use 

of the in vivo confocal microscope to measure toxicity of a chemical was demonstrated by 
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Kaufman et al. (2006).  A comparison of the toxicity of two fourth-generation fluoroquinolones 

gatifloxacin ophthalmic solution 0.3% and moxifloxacin ophthalmic solution 0.5%, was 

investigated. It was found that 0.5% moxifloxacin solution caused greater corneal epithelial cell 

loss than 0.3 %  gatifloxacin. The loss of epithelial cells may be an indication of the cytotoxicity 

of the moxifloxacin fluoroquinolone.   

 

Other sensitive measures for determining toxic or immunoinflammatory effects in humans have 

been used for confirming threshold levels for benzalkonium chloride (BAK). In human clinical 

studies biopsies of conjunctivae and trabeculums of patients who were treated with eye drops 

containing 0.01% BAK were abnormally infiltrated by cells expressing inflammatory or 

fibroblastic markers (Baudouin et al., 1999).  Chronic users of glaucoma drops containing BAK 

increased secretion by conjunctival cells of pro-inflammatory cytokines (Malvitte et al., 2007).  

Using a tear specular microscope and a fluorophotometer it was determined that exposure to 

preserved timolol at 0.005% BAK caused an unstable pre-corneal tear film and it disrupted the 

epithelial barrier function more than the unpreserved control solution in human patients 

(Takeshi, 2003).  Dry eye patients treated with polyvinyl pyrrolidone preserved with BAK at 

0.005% showed an increase in corneal epithelial permeability (Gobbels and Spitznas, 1992).  

These studies show that the toxicity threshold for BAK in humans in the formulations 

investigated was at or below 0.005%. 

 

There are a few studies that have been published that directly compare the toxicity of a chemical 

using rabbit and human subjects.  Roggeband et al. (2000) tested very low concentrations of 
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surfactants in rabbits and humans to determine the relative prediction value of the rabbit ocular 

irritation test. The volumes instilled in the rabbit and human was ten-fold lower than the 0.1 ml 

used in the standard Draize test. Responses in the eye were graded by the Draize scoring scale 

(Draize et al., 1944) and scored using a slit lamp at nine different time intervals throughout a 3 

day period.  The clinical examinations also included fluorescein corneal staining, conjunctival 

fluorescein staining, and tear film break uptime.  The scores for ocular irritation were greater in 

the rabbit than the scores obtained from the human subjects. Rabbits also had higher ocular 

irritation scores than human subjects in an earlier study where 0.1 ml of liquid detergent was 

instilled (Beckley, 1965).  In another study that compared the ocular effects of a soap suspension 

and a household cleaner in rabbit, monkey and human eyes, it was determined that the rabbit was 

less sensitive to the soap suspension but more sensitive to the household cleaner than humans 

(Beckley et al., 1969).  A fourth study compared cornea fluorescein permeability in rabbits and 

humans after exposure to 0.01% and 0.02% BAK using a simple fluorophotometer attached to a 

slit lamp (Burnstein, 1984).  In rabbits, 0.01% and 0.02% BAK caused an increase in fluorescein 

permeability over the controls; whereas, in humans an increase in permeability only occurred 

after instillation of 0.02% BAK.  The human subjects did indicate a stinging sensation 30 

minutes after 0.01% and 0.02% BAK instillation when treated with fluorescein. Increasing the 

concentration of BAK from 0.02% to 0.05% in the rabbit increased sodium fluorescein 

permeability threefold. In these studies using the objective measures for grading irritation there 

were some differences in the sensitivity of human and rabbit corneas exposed to various 

chemicals.  
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 Due to ethical considerations there are few published studies directly comparing rabbit ocular 

irritation with human clinical effects. Industry does perform clinical studies after Draize rabbit 

testing has been completed, but few of these studies have been published. Benzalkonium 

chloride is one chemical that has been used extensively by humans. Toxic effects in humans have 

occurred after instillation of a concentration of BAK as low as 0.005% (Takeshi, 2003; Gobbels 

and Spitznas, 1992).  Animal studies that examined the effects of BAK on the cornea using 

scanning electron microscopy and confocal microscopy also show toxicity at the 0.005%  

concentration of BAK (Pfister and Burnstein, 1976; Burnstein, 1980; Kovoor et al., 2004; Ly et 

al., 2006; Ichijima et al., 1992; Imayasu et al., 1994).   Pauly et al. (2007) demonstrated the 

sensitivity of the confocal microscopy by showing that macroscopic and slit lamp examinations 

revealed signs of ocular irritation only at the 0.25% and 0.5% BAK concentrations; whereas, in 

vivo confocal microscopy revealed epithelial defects at 0.01% and 0.1%.  Histopathological 

techniques detected conjunctival infiltrates (Bequet et al., 1998) and corneal thinning (Pauly et 

al., 2007) in rats treated with 0.01% BAK.   

 

The studies performed to evaluate the toxicity of BAK in rabbits and humans indicate that the 

BAK is toxic at concentrations as low as 0.005%.  It would be ideal if other chemicals were 

investigated as extensively as BAK using sensitive measures of toxicity. In order to determine 

the toxicity of other chemicals less sensitive measures for assessing toxicity using Draize rabbit 

test have been performed (Bagley et al., 1999).  Unlike BAK, many of these chemicals have not 

been tested in humans. It is difficult to make the comparison between a molecular assay and  

human toxicity  because BAK is the only chemical that has been extensively evaluated for 
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effects using the more sensitive measures for detecting toxicity.  The molecular techniques can 

be compared to more chemicals if a comparison is made to Draize testing. However, the 

molecular techniques would likely show toxic effects at lower concentrations due to their 

sensitivity.  The toxicity threshold of BAK has been detected using the most sensitive measures 

for assessing toxic effect in humans and in animals.  Therefore, the accuracy of the molecular 

models can be investigated using BAK as a positive control.   

 

The focus of this investigation is the effect chemicals and contact lens care solutions have on the 

mitochondria of cells.  There are two major functions carried out by mitochondria relevant to cell 

cytotoxicity.  One is that the mitochondria are the powerhouses of the cell. Using the electron 

transport chain protons are pumped out of the inner membrane. This electrochemical gradient 

allows for the coupling of the synthesis of ATP when the protons cross back through the 

mitochondrial inner membrane (Frey and Mannella, 2000).  This ATP is then used to maintain 

the cell’s energy needs.  A second function of mitochondria is the regulation of apoptosis.   

 

Mitochondria hold cytochrome c and the release of this molecule can initiate a cascade of 

caspases that carry out the process of apoptosis (Detmer and Chan, 2007).  Other proteins are 

released by mitochondria such as apoptosis-inducing factor, but only cytochrome c has been 

determined to be essential for apoptosis (Desagher and Martinou, 2000).  Apoptotic cell death is 

non-inflammatory and necrotic cell death can be inflammatory (Freis et al., 1999).   Because of 

the varied responses to the different types of cell death, an understanding of the role of 

mitochondria as either the trigger for apoptotic cell death or part of the events leading to necrosis 
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can be critical for understanding the toxicity of chemicals and product formulations.  Friers et al. 

(1999) outlined 5 major known processes that can lead to cell death after stimulus of the cell 

death inducers tumour necrosis factor (TNF) or CD95L. Three of these processes involve the 

mitochondria. One leads to apoptosis, a second leads to necrosis and a third can cause apoptosis 

or necrosis. In the first process, cytochrome c and other proteins are released from the 

intermembrane space. Caspase then activates an apoptotic pathway. The second process involves 

triggering the mitochondria to produce reactive oxygen species leading to necrosis.  The reactive 

oxygen species cause the cell to swell and then suddenly collapse releasing its intracellular 

contents. In a third pathway reactive oxygen species are produced that release the caspase 

initiating the apoptotic pathway but the production of the reactive oxygen species could also lead 

to necrosis. An interesting aspect of the effects of the reactive oxygen species (ROS) is that the 

ROS can damage the respiratory chain which causes the mitochondria to produce more ROS. 

The dramatic increase in ROS by this feedback loop then leads to cell swelling and death by 

necrosis.  

 

In order to measure the health of the mitochondria of cells after chemical exposure this 

investigation evaluated the activity of mitochondria of the lens using the metabolic dye 

alamarBlue and determined mitochondrial integrity using the fluorescent dye rhodamine 123. 

AlamarBlue, also known as resazuran, changes from a blue nonfluorescent molecule to resorufin 

which is pink and highly fluorescent (O’Brien et al., 2000).  Decreases in alamarBlue 

fluorescence may be the result of lose of viability due to damage to mitochondria. However, it 

was shown that the cytosolic and microsomal enzymes also reduce alamarBlue (Gonzolas and 
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Tarloff, 2001).  Therefore, using another indicator for determining the cytotoxic effects on 

mitochondria is helpful for assessing potential mitochondrial damage. Another common viability 

dye MTT also is reduced by mitochondria, cytosolic and microsomal enzymes (Gonzolas and 

Tarloff, 2001). Unlike alamarBlue there is a requirement that the cells are killed in order to 

release the insoluble crystals from the cells that were generated by the reduction of formation to 

an insoluble product (O’Brien et al., 2000). These crystals may also cause damaged cell 

membranes (Berridge et al., 2005).  Other viability dyes such as XTT, WST-1 are water-soluble 

but have a net negative charge and therefore are mostly cell impermeable. Reductions of these 

dyes do not occur at the mitochondria but at the plasma membrane (Berridge et al., 2005).  

 

The dye Rhodamine 123 is specific for mitochondria thus is an ideal dye for evaluating 

mitochondrial function. Rhodamine 123 at concentrations of 10 ug /ml for 30 minutes was 

shown to adequately stain gerbil fibroma cells (Johnson et al., 1980).  Anaesthetics were shown 

to inhibit mitochondrial electron transport in isolated mitochondria (Chazootte and Vanderkooi, 

1981).  Using a fibroblast cell line, Rhodamine 123 was used to detect the disruption of 

mitochondria by local anaesthetics. Exposure to the anaesthetic bupivacaine caused a reduction 

in Rhodamine 123 fluorescence and diffusion of the stain into the cytoplasm (Grouselle et al., 

1990).  Rhodamine 123 was used to measure the toxicity of mercuric chloride on Madin-Darby 

canine kidney cells.  Treatment of cells with mercuric chloride caused rhodamine 123 

fluorescence to dissipate from the mitochondria into the cytoplasm (Lachowiez et al, 1989).   

Bantseev et al. (2003) demonstrated that exposure of lens epithelial mitochondria and the 

mitochondria of superficial cortical fibre cells to the mitochondrial depolarizing agent carbonyl 
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cyanide m-chloro-phenylhydrazone (CCCP) caused the mitochondria to become short and 

swollen.  Using the Rhodamine 123 to assess fluorescence reduction and mitochondrial 

morphology the effect of chemicals on the integrity of mitochondria can be investigated.  

 

The objective of this study is to determine the ocular toxicity potential of chemicals used in 

ophthalmic products utilizing methods which measure effects on mitochondrial integrity. Using 

these sensitive measures of toxicity the effects of contact lens solutions and benzalkonium 

chloride on epithelial cells were determined.  The chemicals from contact lens solutions can 

uptake into contact lenses and the exposure time and concentration of the chemicals will be 

affected by release from the lens over time. To simulate real use conditions contact lenses were 

placed on a lens epithelium and toxicity was determined after exposure. The bovine lens can be 

cultured in vitro for extended periods of time so recovery from damage can be investigated. Also 

the advantage of using a primary culture is that changes in physiology from the natural in vivo 

state due to viral immortalization and sub-culturing are minimized.  In order to cover the 

physiological differences that may exist between bovine and human cells toxicity studies were 

also performed using a human corneal epithelial cell line.    
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4.2 Materials and Methods 

4.2.1 Chemicals and reagents.  

4.2.1.1 Chemicals 

Rhodamine 123, was obtained from Molecular Probes (Eugene, OR).  AlamarBlue was obtained 

from Biosource (Camarillo, Ca). Benzalkonium chloride (BAK) solution (Fluka Chemika, 

Steinheim, Germany) and Sodium dodecyl sulphate  (SDS) chemical (Sigma, St. Louis, MO) 

prepared in sterile 0.9% saline solution.   ReNu MultiPlus Multi-Purpose Solution (Bausch & 

Lomb, Rochester, NY), OPTI-FREE Express Multi-Purpose Disinfecting Solution (Alcon,  Fort 

Worth, TX) , OPTI-FREE Replenish,  Multi-Purpose Disinfecting Solution (Alcon),  

SOLOCARE AQUA  All-In-One Solution (Ciba Vision,  Duluth, GA), COMPLETE Multi-

Purpose Solution and Sensitive Eyes Saline Plus (Bausch & Lomb) were purchased from 

commercial sources and were used with in the labelled expiration dates.  

 

4.2.1.2 Bovine lens culture medium.  

 M199 modified with Earle’s salts, 26 mM sodium bicarbonate, 0.7 mM L-glutamine ,  7 mM 

NaOH were purchased from Sigma Chemical Co. (St. Louis, MO).   21 mM HEPES , 100,000 

units penicillin/L, 100 mg streptomycin/L, and 3% dialyzed fetal bovine serum (Invitrogen, 

Burlington, ON, Canada).   

 

Madin-Darby canine kidney cell culture medium (MEM).  Minimum Essential Media with 

Earle’s Salts and L-Glutamine, 100,000 units penicillin/L, 100 mg streptomycin/L, and 10% 
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dialyzed fetal bovine serum were purchased from Invitrogen Canada Inc (Burlington, ON, 

Canada).  

 

4.2.1.3 Human corneal epithelium cell culture medium. 

 The human corneal epithelial cells (HCEC) cells were initially cultured in (F12/DMEM-1)  

50/50 Ham's F12/Dulbecco' modified Eagle's medium(Mediatech, Inc, Herndon, VA), 10% heat-

inactivated fetal bovine serum, (Atlanta Biological, Lawrenceville, GA), 5 μg/ml insulin, 0.1 

μg/ml cholera toxin, 10 ng/ml epidermal growth factor, and 50 μg/ml gentamycin. It was 

determined that a simplified media could be used to culture the HCEC. Media was changed to 

simplified medium to (F12/DMEM-2) Dulbecco’s Modified Eagle Medium with L-Glutamine 

and 15 mM HEPES, 100,000 units penicillin/L, 100 mg streptomycin/L and 10% dialyzed fetal 

bovine serum were purchased from Invitrogen Canada Inc (Burlington, On, Canada). 

 

4.2.2  Confocal Analysis of Lens Mitochondrial Integrity   

4.2.2.1 Eye dissection (Lens) 

 Bovine eyes obtained from a local abattoir. Fresh bovine eyes were between 2 and 3 years of 

age and were dissected the same day of post mortem. The lenses were carefully dissected making 

sure the cutting instruments never touched the lens during dissection.  The zonular ligaments of 

the iris were cut as the last step in the dissection removing the lens from all other ocular tissues. 

After dissection the bovine lens was put into a three-part chamber containing medium and 



 

 103 

incubated at 37°C with 4-5% CO2.  After 24 h lenses exhibiting mechanical damage during 

dissection, as evaluated by the visible existence of opacities, were discarded.   

 

4.2.2.2 SDS  Exposure 

Lenses were exposed to Sodium dodecyl sulfate (0.1 to 00625%) for 30 min by submerging the 

lenses into a 50mL conical tube containing 10 mL of SDS solution.  The lenses were then rinsed 

with saline (0.9%), placed in fresh M199 and incubated at 37 ºC at 4-5% CO2 for 24 hours.   

 

4.2.2.3 Direct Contact Contact Lens/Solution Exposure 

AcuVue 2 lenses (Johnson & Johnson) were soaked for 20 hours. A twenty hour soak was 

choosen to cover an extended overnight soak period. Contact lenses were soaked in a 50 mL 

polypropylene conical tube (VWR, Westchester PA) containing 10 mL of test solution (BAK 

1%, 0.1%, 0.01%, 0.005%, 0.001% in saline or contact lens care solution).  Bovine lenses were 

removed from the culture medium and rinsed by submersing them in 0.9% saline.  Contact lenses 

that soaked overnight in the test solution were then placed onto the anterior surface of the bovine 

lens (epithelial surface).  Each bovine lens was then moved to a well of a 6 well plate containing 

5 mL of 0.9% saline so that it covered the bovine lens equator but did not cover the anterior 

surface.  The treated bovine lenses were then placed in a 37 degree C incubator with 4-5 % CO2 

for 19 hours.  In a survey of sleep patterns less than 5% reported sleeping less than 5 hours a day 

(Groeger et al., 2004).  A 19 hour exposure time was chosen to cover the longest possible lens 

wear time for 95% of the population.  After the 19 hour exposure to the treated lenses, the 

contact lenses were removed and each bovine lens was rinsed by submersing in 0.9% saline.  The 
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bovine lenses were placed back into growth media and after a 24 hour recovery the 

mitochondrial integrity of the bovine epithelium was visualized using the confocal microscope.  

 

4.2.2.4 Staining lens cells with Rhodamine 123 

Lenses were transferred into 10 ml serum-free M199 in Wheaton-33 sample glass vials (VWR, 

Mississauga, ON, Canada).  Lens mitochondria were stained using 20 µM Rhodamine 123 for 45 

min at 37°C for lenses exposed to SDS and 20 min for lenses exposed to the contact 

lens/solutions. Shorter exposure times for the evaluations with lens/solutions were preformed as 

shorter exposure times were shown to be effective in assessing bovine lens epithelium for 

changes in mitochondrial integrity (Bantseev and Youn, 2006).  Lenses were rinsed and 

immobilized on cover glasses, attached over 10 mm holes drilled in the bottom of each well of a 

six well plate using 1% agarose, previously melted in M199 and cooled to 35°C.  

 

4.2.2.5 Confocal imaging of bovine lens 

A Zeiss confocal laser scanning microscope (CLSM) 410 system attached to an Axiovert 100 

microscope with a 40x water-immersion C-Apochromat objective was used. The combination of 

an argon/ krypton laser with a 488 nm excitation laser line, and either a 505 or 590 nm long pass 

emission filter, were used to observe Rhodamine 123 fluorescence.  
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4.2.2.6 Statistical analysis 

For the lens cells exposed to SDS statistical calculations were completed using a two way 

repeated measures ANOVA or one-way ANOVA. A probability value of less than or equal to 

0.05 was considered significant.  For the bovine lenses exposed to the contact lens/solution 

combinations assessed in comparison to the BAK controls, the difference in the mitochondria 

integrity between the test and BAK controls were obvious using visual observation. Statistical 

analysis was not required. 

 

4.2.3 Confocal analysis of Cornea, Human Corneal Epithelial Cells and MDCK cells 

mitochondrial integrity 

 

4.2.3.1 Eye dissection (Cornea) 

Fresh (2–3 hours after death) bovine eyes obtained from a local abattoir were carefully dissected 

free of extraocular muscles in a sterile laminar flow hood. For control benchmark evaluations, 

untreated 9.5-mm central corneal buttons were cut with a trephine blade, and the corneal buttons 

were then placed in glass vials containing different fluorescent markers previously dissolved in 

10 mL of Hanks’ balanced salt solution (HBSS). 

 

4.2.3.2 Cell culture  

Madin-Darby canine kidney cells (MDCK) were obtained from American Type Culture 

Collection (Manassas, VA), ATCC# CCL34.   SV40-Adeno vector transformed immortalized 
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human corneal epithelial cells (HCEC) were kindly provided by Dr. Sasaki via RIKEN 

BioResource Center (Japan).   

 

4.2.3.3 Exposure of corneas to contact lens care solutions 

For treatments, 20-mm washers coated with petroleum jelly were placed over the central cornea 

of an intact eye, and the volume inside each washer was filled with approximately 2 mL of 

OPTI-FREE Express multipurpose disinfecting solution, or ReNu MultiPlus No Rub   

multipurpose solution for 30 minutes at room temperature. By using a trephine blade 9.5 mm in 

diameter, central corneal buttons were excised and rinsed twice in HBSS. Control eyes were 

exposed for 30 minutes to HBSS.  

 

4.2.3.4 Staining of Corneas with Rhodamine 123 

After treatment, the corneal buttons were stained with a single mitochondrial-specific  

fluorescent dye, rhodamine 123.  Before confocal analysis, corneal buttons were rinsed twice in 

HBSS and mounted in 1% agarose, previously dissolved in HBSS, on glass-bottom multiwell 

plates (MatTek Corp., Ashland, MA). 

 

4.2.4 Exposure of human corneal epithelial and Madin-Darby canine kidney cells to BAK and 

contact lens care solutions 

Human corneal epithelial cells were grown for 7 days and MDCK cells were grown for 4 days in 

MatTek glass bottom collagen coated culture dishes (Ashland, MA) prior to treatment and 
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staining.  The day of treatment, the culture medium was removed, the cells were rinsed with 1 

mL of HBSS, and 2 mL of the test article was added to the wells for 1 hour, 15 minutes or 5 

minutes.  For contact lens exposure culture media was removed and 2 mL of HBSS was added 

followed by placing an AcuVue 2 lens (Johnson & Johnson) in the center of the culture well for 

three hours.  The contact lenses were soaked for 20 hours in 50 mL polypropylene conical tube 

(VWR, Westchester PA) containing 10 mL of solution prior to placing the lens over the human 

corneal epithelial cells.  The cells were rinsed with 1 mL of MEM and then 1 mL of MEM was 

placed in each culture plate.   

 

4.2.4.1 Staining  cells with Rhodamine 123 

Cell mitochondria were stained for mitochondria using 160 µM Rhodamine 123 for 20 min at 

37°C.   After 20 minutes, the Rhodamine 123 was removed, the tissue was rinsed with 1 mL of 

MEM, and then 1 ml of MEM was added to each well prior to visualizing the mitochondria using 

the confocal microscope.  

 

4.2.4.2 Confocal imaging of corneas, HCEC, and MDCK cells 

The mitochondria of corneas and cells lines were imaged using a Zeiss 510 Meta 18 confocal 

laser scanning microscope (Carl Zeiss Canada Ltd., Toronto, ON, Canada) system equipped with 

an inverted Axiovert 200 mol/L microscope and 40X  water-immersion C-Apochromat high 

numerical aperture objective.  High-resolution X, Y (0.22  µm x 0.22 µm) and Z-series (0.44– 

0.62µm) stacks of cornea epithelial layers were acquired. The images taken for the corneal cell 
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lines were taken near the center of the cells.  The combination of appropriate lasers and emission 

filters, as suggested by the manufacturer, were used to visualize specific dye fluorescence.   

 

Cornea images were analyzed by semi-automated quantitative image analysis. Lengths and 

number of mitochondria were taken using the image analysis toolbox of the MatLab software. 

The minimum mitochondrial area filter specified the minimum area (in pixels) to recognize an 

object as a mitochondrion. The threshold level establishes the intensity level to separate 

mitochondria from background. Digital confocal images were processed first by the software to 

estimate the number and length of the mitochondria and subsequently corrected by an operator 

using a set of software tracing tools. The operator, an experienced computer user, was masked to 

the treatment groups. 

 

4.2.4.3 Statistical Analysis 

The analysis of the cornea mitochondria (i.e., the number and length of the mitochondria) was 

carried out by using an analysis of variance over depth, as calculated by SAS 9.1 statistical 

software (SAS Institute, Inc., Cary, NC). Differences were considered significant at probability 

levels less than or equal to 0.05. The difference was recorded numerically with all results 

expressed as mean ± standard error of the mean.   

 

For the cell lines, the difference in the mitochondria integrity between the test and BAK controls 

were obvious from visual observation.  Mitochondrial integrity differences between Optifree 
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Express and Optifree Replenish versus the other lens care solutions were substantial enough that 

no additional quantification differences in addition to the visual analysis was required.  

 

4.2.5 AlamarBlue Test of Bovine Lenses and Human Corneal Epithelial Cells  

 

4.2.5.1 Direct Contact -Contact Lens/Solution Exposure Bovine Epithelium 

AcuVue 2 lenses (Johnson & Johnson) were soaked for 20 hours in 50 mL polypropylene conical 

tube (VWR, Westchester PA) containing 10 mL in BAK 1%, 0.1%, 0.01% or a contact lens care 

solution.  Bovine lenses were removed from the culture medium and rinsed by submersing them 

in 0.9% saline.  Contact lenses that soaked overnight in the test solution were then placed onto 

the anterior surface of the bovine lens (epithelial surface).  Each bovine lens was then moved to a 

well of a 6 well plate containing 5 mL of 0.9% saline so that it covered the bovine lens equator 

but did not cover the anterior surface.  The treated bovine lenses were then placed in a 37 degree 

C incubator with 4-5 % CO2 for 19 hours.  

 

After the 19 hour exposure to the treated contact lenses, each bovine lens was rinsed by 

submersing in 0.9% saline.  One group of treated bovine lenses were placed into M199 culture 

medium and evaluated after a 1 day recovery period, followed by reincubation in culture media 

and an assessment of viability after an additional 2 days of incubation. A second group of treated 

bovine lenses were placed into M199 and evaluated after a 3 day recovery period, followed by a 

reincubation of the lenses and an assessment of viability at 5 days and 7 days following the 

initial treatment.  
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The alamarBlue test consisted of placing the anterior side of the bovine lens down into a well of 

a 12 well plate that contained 1 mL of an 8% alamarBlue solution prepared in M199 culture 

media without bovine serum. The bovine lenses were incubated in the alamarBlue solution for 2 

hours.  After 2 hours the bovine lenses were removed from the alamarBlue and the plates were 

read at 530 excitation and 590 emmision using a CytoFluor II fluorometer (perceptive 

Biosystems Inc. Framingham, Ma. USA).  

 

4.2.5.2 Treatment of human corneal epithelial cells (cell monolayer) 

A cell suspension (1 mL) containing 10
5
 cells was seeded in 24-well plates. The plates were then 

incubated at 37°C with 5% CO2 for 2 days, when the cultures were approximately 75% to 80% 

confluent (McCanna et al., 2008).  The medium was aspirated from each well, and the well was 

rinsed with 1 mL Hank’s balanced salt solution (HBSS). After aspirating the HBSS, the wells 

were treated with the test solutions for 15 minutes at room temperature. Four replicate wells were 

used for each solution. After removal of the solutions, the wells were rinsed with 1 mL HBSS, 

and then 1 mL of 10% alamarBlue prepared in medium without phenol red and serum was added 

to each well. Some alamarBlue was also added to four blank cell-free wells. The fluorescence of 

each well was measured by using a fluorescence plate reader at 530 nm excitation and 590 nm 

emission. The 24-well culture plate was then incubated at 37°C for 4 hours, and then the 

fluorescence was determined again. The difference of the fluorescence at 4 hours and at time 

zero represented the metabolic activity of the cells in that well, and the average fluorescence of 

the four wells was determined after subtracting the fluorescence of the blank wells. 
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4.2.5.3 Statistical Analysis 

For the alamarBlue assay the statistical significance of differences between treatment groups was 

determined with an ANOVA. The criterion of statistical significance was predetermined to be P  

≤  0.05. 

 

4.2.6 Treatment of human corneal epithelial cells and MDCK cells(trypsinized cells) 

Additional studies were performed to evaluate the effect of contact lens solutions on trypsinized 

cells.  Human corneal epithelial cells from RIKEN Bio Resource Center and MDCK cells were 

grown in flasks for 4 days in DMEM/F12 media (HCEC) and MEM media (MDCK).  The cells 

were harvested with 0.25% trypsin and counted in a hemocytometer.  The cells were then placed 

into Millicell wells in 1 mL of medium and allowed to settle for 5 minutes.  The media was then 

rinsed out of the insert from the bottom using sterile absorbant gauze pads. One ml of HBSS was 

added to the well and rinsed out through the bottom of the insert. Two mL of the test solution 

was added to the top of the well and the wells were placed into a 37 degree incubator for 1 hour.  

After one hour of incubation, the test article was removed and 5 mL of medium with serum was 

added to the filter and rinsed through.  After rinsing the filters, treated cells were placed into the 

wells of a 6 well plate that contain 1 mL of 10% alamarBlue in MEM (no serum) per well.  Two 

mL of 10% alamarBlue in MEM was then added to the top of each well and the plates were 

placed into a 37 degree C incubator for 4 hours. After 4 hours, 1 mL aliquots from the plates 

were taken and placed into 12 well plate.   The plates were read at 530 excitation and 590 

emmision using a CytoFluor II fluorometer (perceptive Biosystems Inc. Framingham, Ma. USA). 
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The HCEC were placed after treatment into 7mL of growth media and evaluated for alamarBlue 

reduction after 24 hours recovery. The MDCK treated cells that were evaluated immediately 

after treatment were rinsed and placed into media and then evaluated again for alamarBlue 

reduction after 24 hours of recovery.  

 

4.3 Results: 

4.3.1 Confocal analysis of the bovine lens after exposure to SDS 

 The toxicity due to SDS exposure could be seen by visualizing the epithelial and fiber cells after 

30 minutes exposure and 24 hours of recovery (Bantseev, McCanna et al., 2003).  No 

mitochondria were present in the epithelial cells exposed to 0.1%, 0.05% or 0.025%  SDS. 

Mitochondria were present in the epithelial cells exposed to 0.0125% SDA and 0.00625% SDS. 

Mitochondria were longer and showed a greater relative fluorescence in the lens epithelial cells 

exposed to the 0.00625% SDS concentration than the 0.0125% SDS concentration (Table 1).    

 

No mitochondria were present in the superficial cortical fiber cells exposed to the 0.1%, 0.05% 

or 0.025% SDS.  The cells exposed to SDS concentrations 0.0125% and 0.00625% were 

significantly more damaged than the control cells (Table 2).  Fiber cells at the equator had 

shorter mitochondrial length and decreased relative fluorescence when compared to the 

mitochondria of the control lenses.   In the lenses treated with 0.0125% SDS, the mitochondria 

were absent in the anterior and posterior superficial cortical fiber cells.  The mitochondria were 

also absent in the posterior superficial cortical fiber cells exposed to 0.00625% SDS.   The depth 

below where there is a mitochondria free zone was also measured (Table 2).  This zone was 
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significantly different than the control (anterior 153.90 ± 17.10, equator 205 ± 11.40) for the 

cells exposed to the 0.0125% concentration (anterior unable to measure, equator 71.35 ± 2.95) 

whereas the mitochondria free zone was not different than the controls for the cells exposed to 

0.00625% SDS (anterior 142.50 ± 5.70, equator 183.10 ± 34.90).  At the 0.0125% concentration 

the mitochondrial free zone could not be measured as no mitochondria were present.  

 

4.3.1.1 Confocal analysis of the bovine lens after exposure contact lens/solution. 

Bovine lenses exposed to contact lenses treated with various concentrations of BAK were 

examined at different magnifications using a 10x and a 40x objective.  After a 19 hour exposure 

and a 24 hour recovery the effects of BAK could be detected after staining with Rhodamine 123.  

As shown in figure 1, the epithelial layer exposed to an untreated contact lens has cells that are 

tightly apposed to each other and show visible mitochondria (Fig. 1A-1C).  Epithelial cells 

exposed to an AcuVue lens that was soaked overnight in 0.001% BAK have separated from each 

other and the Rhodamine dye is dispersed into the cytoplasm of the cell (Fig. 1D-1F).  Epithelial 

cells exposed to an AcuVue lens that was soaked overnight in 0.01% BAK showed a significant 

loss of epithelial cells from the lens and wider gaps exist between cells (Fig 1G-1I).  All but one 

lens out of thirteen negative controls for this experiment showed no damage after treatment 

Table 3.  The lenses treated with contact lenses soaked in BAK showed progressively more 

damage as the BAK concentration was increased from 0.0001% to 0.01% (Table 3).   

 

Shorter exposure times of 15 minutes and 1 hour with 24 hour recovery, caused less damage to 

the epithelial cells than 19 hour exposure. However, the initial stages in the loss of  
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mitochondrial integrity can be seen (Figure 2).  The bovine lens epitheliums exposed to contact 

lenses soaked in 0.9% saline for 1 hour were not damaged (2A-D). Exposure to a contact lens 

soaked in 0.01% BAK for 15 minutes caused breaks between the cells and shortened and swollen 

mitochondria in one of the two lenses tested (2E-2F)  The second lens was not damaged (2G, 

2H).  After a 1 hour exposure to a contact lens soaked in 0.01%  BAK, there were breaks in 

between cells in one of the two tested lenses (Fig. 2I) and both lenses showed some shortened 

and swollen mitochondria (Fig. 2J, 2L). 

 

Treatment of the epithelium with contact lenses soaked in ReNu MultiPlus or Optifree Express 

for 19 hours and 24 hour recovery caused little damage (Table 4).  

 

4.3.1.2 AlamarBlue Bovine lens 

Bovine lens epitheliums were exposed for 19 hours with 24 hour recovery to contact lenses 

soaked in different concentrations of BAK.  The first experiment evaluated the same lenses for 

lens epithelial viability using alamarBlue at 24 hours post exposure and 72 hours post exposure 

(Figure 3).  After the initial alamarBlue exposure the lenses were washed in 0.9% saline and 

incubated in growth medium until the second reading at 72 hours post exposure.  In a second 

experiment, different lenses were prepared and tested separately (Figure 4) at the 72 hour 

timepoint to determine if previous alamarBlue exposure had an effect on the viability of the lens 

epithelium.  These studies show that there was a reduction in the viability of the lens epithelium 

as BAK concentrations were increased and that previous exposure to alamarBlue did not have a 

substantial effect on the outcome of the test.  After incubating the lenses for 7 days after 
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exposure there was a slight reduction in alamarBlue reduction in the control and treated lenses 

(Figure 5).  

 

Additional lenses were prepared and exposed to contact lenses treated for 19 hours with different 

concentrations of BAK and contact lens care products.  Readings were taken at the 24 hours 

recovery point (Figure 6) and the lenses were reincubated and read at 72 hours (Figure 7) after 

initial exposure.  The contact lens care solutions did not show a reduction in the viability of the 

lens epithelium after either 1 day and 3 days of recovery.  The 3 day recovery timepoint showed 

a greater difference between the viability of the various doses of BAK than the 1 day  recovery 

timepoint.   

 

4.3.2 Confocal analysis of Cornea, Human Corneal Epithelial Cells and MDCK cells for 

mitochondrial integrity 

Corneas exposed to Optifree Express Multipurpose solution  and ReNu MultiPurpose solution 

for 30 minutes were evaluated for effects on the mitochondria of cultured bovine corneas 

(Bantseev, McCanna et al., 2007).    Treatment with Optifree Express significantly decreased (P< 

0.05) the number of mitochondria in the superficial epithelium and the intermediate epithelium 

compared to Hanks’ balanced salt solution (HBSS) controls.  Treatment with ReNu MultiPlus 

also significantly decreased (P<0.05) the number of mitochondria, but only in the superficial 

epithelium, compared to HBSS controls.  The corneas exposed to Optifree Express had less 

mitochondria at the depths of 3.74 to 7.49µm, compared to ReNu MultiPlus.  
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Human corneal epithelium cells exposed to BAK and various contact lens care solutions were 

evaluated for mitochondria integrity after various exposure times.  Exposure of the human 

corneal epithelial cells to 0.01% BAK for one hour caused significant damage (Figure 8A).  

Also, there was no recovery after 24 hours (Figure 8B).  After 1 hour exposure, three contact lens 

care products were tested.  Compared to Sensitive Eyes Saline Solution, Optifree Replenish and 

ReNu MultiPlus showed damage to the corneal epithelial cells (Figure 9).   

 

After 15 minutes exposure, human corneal epithelial cells exposed to Optifree Replenish did not 

exhibit distinct mitochondria, whereas the mitochondria in the cells exposed to ReNu MultiPlus 

solution were visible (Figure 10).  Solocare (Fig. 11A) and Optifree Express (11B) also caused a 

loss of  mitochondrial integrity after 15 minute of exposure; whereas Complete (11C) did not 

cause damage and the culture was similar to the 0.9% saline control (11D).  BAK caused damage 

to the mitochondria after 15 minute of exposure at 0.01% (11E) but did not affect the 

mitochondria at the 0.001% concentration (11F).   

 

A 5 minute exposure to Optifree Express, Optifree Replenish and BAK 0.01% still causes 

damage to the mitochondria of the epithelial cells (Figure 12).  The solutions Complete, 

Solocare, ReNu MultiPlus and BAK 0.001% did not cause damage and the mitochondria looked 

very similar to the 0.9% saline control (not shown).   

 

Because human tears can dilute solutions after initial instillation into the eye, an assessment was 

made to determine the dilution in 0.9% saline at which Optifree Express, Optifree Replenish and  
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BAK do not affect the mitochondrial integrity of human corneal epithelial cells (Figure 13).  

Optifree Express had to be diluted to a 20% solution and Optifree Replenish to a 25% solution in 

0.9% saline before distinct mitochondria were visible.  Even at these dilutions, degradation of 

some of the cells in the cell monolayer were visible.  BAK had to be diluted to 0.003% before 

there was a marked decrease in the number of degraded mitochondria.  The cells exposed to a 

BAK concentration of 0.001% showed mostly distinct mitochondria, although there was an 

occasional cell that showed loss of mitochondrial integrity.   

 

After establishing the concentrations at which these solutions affect the mitochondria of the lens 

epithelial monolayer, we investigated whether contact lenses soaked in these solutions could 

produce similar effects.  When a contact lens is placed in the eye there will be some carryover of 

the solution in the lens case to the eye.  In addition, preservatives and other chemicals can also 

concentrate in the matrix of the lens and be released over time.  The effects of the contact lens 

solution combinations after 3 hours exposure were investigated (Figure 14).  The effect of 

Optifree Express was evaluated at 2 hours, as it had the strongest effect on the cell monolayers 

when evaluated as a solution (Fig. 14F).   The effect of Optifree Express and Optifree Replenish- 

soaked contacted lenses had on the cells was similar to the effect seen using just the solution 

alone at shorter exposure times.  The cells are damaged and the mitochondria are not easily 

identified. The other contact lens solutions appear to have mitochondria that are slightly 

degraded in comparison to the 0.9% saline soaked contact lens control. However, the 

mitochondria are clearly visible (Fig. 14B-14E).  Damage to the human corneal epithelial cells 

can be seen with lenses soaked in 0.001% and 0.01% BAK (Fig. 14H, 14I). 
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4.3.3 Confocal evaluation MDCK cells 

 

Madin-Darby Canine kidney cells were evaluated to see if they also could be used to assess  

toxicity of chemicals.  After 15 minute of exposure cultures exposed to 0.9% Saline and BAK 

were evaluated.  Cells  were exposed to BAK 0.001%, BAK 0.01%, and 0.9% Saline (Figure 

15).  Both BAK concentrations disrupted the mitochondrial integrity of the cells.  The 

mitochondria of one of the cells exposed to the 0.001% BAK concentration have round shapes 

that are very different than mitochondria in the neighboring cells. 

 

4.3.4 AlamarBlue test of human Corneal Epithelial cells. 

Monolayers of human corneal epithelial cells were evaluated for viability after 15 minutes 

exposure to ReNu MultiPlus, Solocare, Complete, Aquify, and Optifree Express (McCanna et 

al., 2008).  Optifree Express-treated cultures showed significantly reduced alamarBlue activity 

when compared to the HBSS control and all other tested lens care products  p < 0.05. (Figure 16) 

 

HCEC and MDCK trypsinized cells were exposed to contact lens care products for  1 hour.  

Optifree Express and Optifree Replenish showed reduced alamarBlue activity when compared to 

HBSS and the other lens care solutions (Figure 17, Figure 18).  
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Tables and Figures 

Table 1   

List of average mitochondrial (MT) length  (µm) ± SEM and Relative Rhodamine 123 Fluorescence in Epithelial of 

Bovine Lenses Treated with Different  

SDS Concentrations 24 h Postexposure and Controls 

SDS treatment (%) 

Measurement 

 

0.0125 

(n = 8) 

0.00625 

(n = 8) 

Control 

(n =8) 

Average MT length  in the central epi 2.95 ± 0.72** 7.19 ± 0.29 7.01 ± 0.41 

A verage MT length in the intermediate 

epi 

3.98 ± 0.31** 7.37 ± 0.41 7.03 ± 0.24 

Average MT length in the epi, at equator 4.55 ± 0.47** 7.49 ± 0.44 7.04 ± 0.25 

The ΔΨ, in the centrol  epi ± SEM 12,816 ± 1657** 35,485 ± 665** 40,216 ± 766 

The ΔΨ, in the intermediate epi ± SEM 11,487 ± 601** 26,978 ± 381** 40,072 ± 1046 

The ΔΨ, in the epi at equator ± SEM 14,168 ± 1131** 28,182 ± 

1374** 

40,976 ± 1457 

 

Note. Relative Rhodamine 123 fluorescence indicates changes in mitochondiral electron chain potential 

ΔΨ.  ** indicates significantly lower ΔΨ, at p < 0.0001 as compared to controls.  
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Table 2 

List of the Average Mitochondrial (MT) Length (µm) ± SEM and Relative Rhodamine 123 

Fluorescence in Epithelial and Superficial Cortical Fiber Cells and the Depth Below Which the 

Mitochondria Free Zone Starts (MFZ below a depth, µm) in Bovine Lenses Treated with 

Different SDS Concentrations 24 h Postexposure as Compared to Controls 

 

SDS treatment (%) 

 

 

Measurement 0.0125 

(n = 8) 

0.00625  

(n = 8) 

Control 

(n =8) 

Average MT length in the central fib Unable to 
measure 

19.55 ± 1.41 18.37 ± 1.22 

Average MT length in the  fib at 
equator 

17.42 ± 2.30** 23.00 ± 1.78 ** 41.16 ± 2.24 

Average MT length in the posterior 
fib 

Unable to 
measure 

Unable to 
measure 

17.22 ± 1.22 

The  ΔΨ, in the fib at the equator ± SEM 151,369 ± 

24,424 ** 
292,836 ± 

42,774* 
446.390 ± 

59,100 
The  ΔΨ, in the anterior fib. ± SEM Unable to 

measure 
255,575 ± 

22,786* 
361,329 ± 

16,115 

Anterior MFZ ± SEM Unable to 
measure 

142.50 ± 5.70 153.90 ± 17.10 

MFZ at equator ± SEM 71.35 ± 2.95** 183.10 ± 34.90 205.20  
 Note. Relative Rhodamine 123 fluorescence indicates changes in mitochondiral electron chain potential 

ΔΨ.  *   indicates significantly lower ΔΨ, at p < 0.05 as compared to controls.* *indicates significantly 

lower ΔΨ, at p < 0.0001 as compared to controls.  

Table 1 and Table 2. Reprinted with Permission Bantseev, McCanna et al. Toxicological 

Sciences. 2003.  
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1A               1B                                        1C 

 

1D               1E             1F 

   

  1G               1H             1I 

Figure 1: Bovine lens epithelium after a 19 hour exposure and a 24 hour recovery.  Untreated contact lens treated 

cells are tightly apposed to each other and show visible mitochondria (Fig. 1A-1C).  Exposure to an AcuVue II lens 

that was soaked overnight in 0.001% BAK (Fig 1D-1F). Cells have separated from each other and the Rhodamine 

dye is dispersed into the cytoplasm of the cells. Exposed to an AcuVue II lens soaked overnight in 0.01% BAK 

showed a significant loss of epithelial cells from the lens and show wide gaps between cells (Fig 1G-1I). 
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Table 3: Bovine lens epithelium after 19 hours exposure and 24 hour recovery to AcuVue II contact lenses soaked 

in various solutions.  Healthy bovine lens epithelium/number of lenses tested. 

 

 Contact 

Lens 

Treated 

 

Saline 

Control 

No 

Treatment 

Sensitive 

Eyes 

Saline 

treated 

contact 

lens 

0.9% 

Saline 

Treated 

Contact 

Lenses 

 

Negative 

Control 

Total 

0.0001% 

BAK 

Treated 

Contact 

Lenses 

 

0.0005% 

BAK 

Treated 

Contact 

Lenses 

 

0.001% 

BAK 

Treated 

Contact 

Lenses 

 

0.01% 

BAK 

Treated 

Contact 

Lenses 

 

Cells 

tightly 

apposed 

to each 

other 

 

4/4 

 

2/2 

 

2/2 

 

4/5 

 

12/13 

 

2/3 

 

2/3 

 

1/6 

 

0/3 

Mito-

chondria 

present 

4/4 2/2 2/2 5/5 13/13 3/3 2/3 2/6 0/3 
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2A           2B 

 

     

2C           2D 

Figure 2 (A-D):  Bovine lens epithelium after 1 hour exposure with 24 hour recovery  to AcuVue II contact lenses 

soaked in  0.9% saline.  The bovine epitheliums exposed to contact lenses soaked in 0.9% saline for 1 hour were not 

damaged (2A-2D). 

 

 



 

 124 

  

2E           2F 

     

2G                       2H 

Breaks =            Swollen mitochondria = 

Figure 2 (E-H):  Bovine lens epithelium after 15 minute with 24 hour recovery  to AcuVue II contact lenses soaked 

in  0.01% BAK. Exposure to a contact lens soaked in 0.01% BAK for 15 minutes caused breaks in between the cells 

and shortened and swollen mitochondria in one of the two lenses tested (2E, 2F)  The second lens was not damaged 

(2G, 2H). 
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2I       2 J 

    

2K       2L 

Breaks =            Swollen mitochondria = 

Figure 2 (I-L):  Bovine lens epithelium after 1 hour exposure with 24 hour recovery  to AcuVue 

II contact lenses soaked in 0.01% BAK.  After a 1 hour exposure to a contact lens soaked in 

0.01% BAK there were breaks in between cells in one of the two tested lenses (Fig. 2I). The 

other epithelium there was no breaks between cells (Fig. 2K).  Both epitheliums exposed a 

contact lens soaked in 0.01% BAK showed some shortened and swollen mitochondria (Fig. 2J, 

2L). 
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Table 4:  Bovine lens epithelium after 19 hours exposure and 24 hour recovery to AcuVue II contact lenses soaked 

in various solutions.  Healthy Bovine Lens Epithelium/Number of Lenses tested. 

 ReNu 

Multiplus 

Optifree 

Express 

Negative 

Control 

Total 

0.001% 

BAK 

Treated 

Contact 

Lenses 

 

0.01% 

BAK 

Treated 

Contact 

Lenses 

 

Cells 

tightly 

apposed to 

each other 

 

4/5 

 

3/3 

 

12/13 

 

1/6 

 

0/3 

Mitochond

ria present 

4/5 3/3 13/13 2/6 0/3 

 

 

Figure 3:  AlamarBlue reduction. Exposure of lens epithelium to AcuVue II contact lenses soaked in various 

concentrations of BAK for 19 hours with 1 and 3 day recovery.  The same lenses were used for both timepoints. * 

indicates significant differences as compared preceding dose (p < 0.05) 
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Figure 4:  AlamarBlue reduction. Exposure of lens epithelium to AcuVue II contact lenses soaked in various 

concentrations of BAK for 19 hours with 1 and 3 day recovery.  Different lenses were used for each timepoint for 

comparison with the study where the same lens was used for each recovery timepoint (figure 3).  This was done to 

see if previous alamarBlue exposure could effect the recovery of the lenses from exposure to BAK. * indicates 

significant differences as compared preceding dose (p < 0.05) 
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Figure 5:  AlamarBlue reduction. Exposure of lens epithelium to AcuVue II contact lenses soaked in various 

concentrations of BAK for 19 hours with 3, 5 and 7 day recovery.  The same  lenses were used for each timepoint.   

* indicates significant differences as compared preceding dose (p < 0.05). 
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Figure 6: AlamarBlue reduction. Exposure of lens epithelium to AcuVue II contact lenses soaked in various 

solutions  for 19 hours, after 1 day of  recovery. * indicates significant differences as compared preceding dose (p < 

0.05). 

 

Figure 7: AlamarBlue reduction. Exposure of lens epithelium to AcuVue II contact lenses soaked in various 

solutions  for 19 hours after, 3 days of  recovery.  * indicates significant differences as compared preceding dose (p 

< 0.05) 
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8A 

 

 8B 

Figure 8:  Human corneal epithelial cells exposed to 0.01% BAK after 1 hour exposure (8A) and 24 hours later 

after recovery (8B) in culture media.  
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9A       9B 

 

 9C         9D 

Figure 9: Human corneal epithelial cells exposed to  Optifree Replenish (A),  ReNu MultiPlus (B) and Sensitive 

Eyes Saline Solution  (C),  for 1 hour. The images of  Optifree Replenish and ReNu MultiPlus  exposed epithelial 

cells showed damage to the corneal epithelial cells.   Untreated control (D) (Figure 9).   
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10A           10B 

 

10C     

Figure 10:  Human corneal epithelial cells exposed to  Optifree Replenish (A),  ReNu MultiPlus (B) and Sensitive 

Eyes Saline Solution  (C),  for 15 minutes .  Cells to Optifree Replenish did not exhibit distinquishable mitochondria 

whereas cells exposed to ReNu MultiPlus and Sensitive eyes saline maintained their mitochondrial integrity. 
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11A       11B      11C 

   

 11D        11E     11F 

Figure 11:   Human corneal epithelial cells exposed for 15 minutes to  Solocare (Fig. 11A),  Optifree Express (11B),  

Complete (11C), 0.9% saline control (11D), BAK 0.01%(11E) and  0.001% BAK concentration  (11F).  Solocare, 

Optifree Express and BAK 0.01% treated cells have lost mitochondrial integrity whereas  the mitochondria of cells 

treated with  Complete and 0.001% BAK were similar cells treated with 0.9% saline control (11D).  
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12 A             12B 

 

12C     

Figure 12: Human corneal epithelial cells exposed for 5 minutes to 0.01% BAK (12A), Optifree Express (12B), and 

Optifree Replenish (12C), caused a loss of mitochondrial integrety.  The solutions  Complete, Solocare, ReNu 

MultiPlus and BAK 0.001% did not cause damage and the mitochondria looked very similar to the 0.9% saline 

treated control (not shown). 
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  13A         13 B           13C     

   

  13D            13E             13F 

  

13G             13H    13I 

Figure 13:  Human corneal epithelial cells exposed for 5 minutes to various dilutions of solutions in 0.9% saline. 

25% dilution Optifree Express (13A), 20% dilution of Optifree Express (13B), 10% dilution of Optifree 

Express(13C), 25% dilution of Optifree Replenish (13D), 20% dilution of Optifree Replenish (13E),  10% dilution 

of Optifree Replenish(13F), BAK 0.003%(13G) , BAK 0.002% (13H), BAK 0.001% (13I).   
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14A            14B           14C 

  

14D          14E          14F 

   

14G         14H            14I 

 
Figure 14: Human corneal epithelial cells exposed to AcuVue II contact lenses soaked in various contact lens care 

solutions for 3 hours (Optifree Express 2 hours).  AcuVue lenses soaked in 0.9% saline control (14A), Sensitive 

Eyes Saline (14B), Solocare (14C), ReNu MultiPlus (14D), Complete (14E), Optifree Express (14F), Optifree 

Replenish (14G), BAK 0.001% (14H), BAK 0.01% (14I).  Optifree Express and Optifree Replenish  treated human 

corneal epethelial cells showed less mitochondireal integrity than the cells exposed to the other contact lens care 

solutions.  
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15A            15B                                  15C 

Figure 15:  Madin-Darby Canine kidney cells exposed to BAK 0.001% (15C) and 0.01% (15B) for 15 minutes.    

Both  BAK concentrations disrupted the mitochondria  integrity of the cells.  The mitochondria of one of the cells 

exposed to the 0.001% BAK concentration had a round shape that is very different than the neighboring 

mitochondria.  Cells exposed to 0.9% saline are shown  (15A). 
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Figure 16. The results of alamarBlue assay after treating the cultures with various solutions. The results 

represent three separate experiments and are expressed as a percentage of the Hank’s balanced salt 

solution activity. A reduced percentage, as seen with the OPTI-FREE Express–treated cultures, represents 

a toxic effect on cells. 
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Figure 17.  HCEC trypsinized cells were exposed to contact lens care products for 1 hour and evaluated for viability 

after 24 hour recovery.  Optifree Express and Optifree Replenish showed reduced alamarBlue activity when 

compared to HBSS and the other lens care solutions.  

 

 
 
Figure 18. .  MDCK trypsinized cells were exposed to contact lens care products for  1 hour and were assessed for 

viability immediately after exposure and after 24 hour recovery.  Optifree Express and Optifree Replenish showed 

reduced alamarBlue activity when compared to HBSS and the other lens care solutions.  
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4.4 Discussion 

4.4.1 BAK Toxicity   

Sensitive measures for determining toxic effects in humans have shown that benzalkonium 

chloride that can cause toxic effects at concentration ≥  0.005% (Baudouin et al., 1999; Malvitte 

et al., 2007; Takeshi, 2003; Gobbels and Spitznas, 1992).  Animal studies that investigated the 

ocular toxicty of BAK using sensitive measurements of assessing damage also determined that 

BAK can be toxic to the eye at concentration ≥ 0.005% (Pfister and Burnstein 1976; Burnstein, 

1980; Kovoor et al., 2004; Ly et al., 2006;  Ichijima et al., 1992; Imayasu et al., 1994).   The 

confirmation of the ocular toxicity threshold for BAK in humans and in animal makes BAK an 

ideal chemical for investigating the accuracy of in vitro toxicity models.  

 

Many molecular techniques have been proposed for assessing toxicity at the molecular level. 

Debbasch et al. (2001) investigated the toxicity of quaternary ammonium compounds by 

evaluating cell membrane integrity of human conjunctival cells using the neutral red test, 

mitochondrial activity using flow cytometry with Rhodamine 123, DNA condensation test, and 

measuring for the production of reactive oxygen species after 15 minute exposure and at 24 

hours of recovery.  After 15 minutes of treatment BAK caused a significant change in membrane 

integrity and mitochondrial activity at the 0.005% level.  Production of reactive oxygen species 

was detected as low as 0.00001% and chromatin condensation, which measures apoptosis, was 

detected as low as 0.001%. After 24 hours of recovery, membrane integrity decreased in the 

0.001% treatment group and chromatin condensation did not show signs of recovery.  De Saint 
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Jean et al. (2002) exposed human conjunctival cells for 10 minutes and measured recovery after 

24, 48, and 72 hours. A change in membrane integrity occurred as low as 0.0001% and above at 

24, 48 and 72  hours of recovery.   These cells were additionally measured for expression of the 

apoptotic marker Apo 2.7. Cells treated with concentrations of BAK as low as 0.0001% showed 

expression of Apo 2.7. Membrane integrity decreased after recovery and apoptosis occurred at a 

concentration that is at least ten-fold lower that the dose of BAK that has been shown to be toxic 

in the eye. Thus, delayed effects on membrane integrity and the onset of apoptosis, although 

present, may not be severe enough at the BAK concentrations of 0.0001% to 0.001% to cause 

pathology in humans. The initiation of cell death in a cell population due to the effect of a 

preservative may initially present itself as apoptosis at low concentrations. These cells are 

removed from the body through the normal process of removal of naturally occurring apoptotic 

cells and may not cause pathology. As the damage increases due to increasing the concentration 

the process of cell death may change from apoptosis to necrosis resulting in the increased level 

of damage caused by inflammation and damage from necrotic cell death.  BAK was shown by 

De Saint Jean et al. (1999) to cause necrosis at high concentration of 0.1% and 0.05% and 

delayed death by apoptosis at concentrations between 0.01% and 0.001%.  

 

Various other cell types have been evaluated for cytotoxicity after exposure to BAK.  

Using Acridine orange and propidium iodide to assess live and dead cells Vaughan and Porter 

(1993) determined that the threshold for cell death from BAK using mouse L-929 mouse 

fibroblast cells exposed for 2 hours to BAK was 0.01%.    Hallet (2005) showed toxicity to 

Deruminstitut rabbit corneal cells using the metabolic dye MTT after a 15 minute treatment to 
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0.01% BAK. In both of these studies cells exposed to BAK at a concentration of 0.001% did not 

show significant reduction in the number of viable cells, compared to a buffered saline control. 

 

This current investigation determined the effect of   BAK on the mitochondrial integrity of 

epithelial cells using confocal microscopy with the fluorescent dye Rhodamine 123 and the 

viability dye alamarBlue.  Even at a short exposure time of 5 minutes BAK at 0.001% caused 

some human corneal epithelial cells to lose mitochondrial integrity.   Increasing the time of 

exposure and the BAK concentrations caused increased detrimental effects on the mitochondrial.  

BAK concentrations between 0.001% and 0.01% showed substantial effects on mitochondrial 

integrity.   Measurements of mitochondrial integrity are relevant endpoints for predicting human 

ocular toxicity, as the levels of BAK that cause toxicity in humans (≥ 0.005%) had substantial 

effects on the mitochondria.   Other chemicals and product formulations can be assessed for 

toxicity by evaluating effects on mitochondrial integrity and relative toxicity to BAK can be 

determined.    

 

4.4.2  Cell Culture 

In vitro cell culture tests establish the safety of new chemicals and product formulations by 

determining whether there is a disruption in the normal physiology of cells after exposure.    A 

disruption in the cells physiology may not result in a change in the cells functionality or lead to 

cell death.  The cells of the corneal epithelium are responsible for maintaining a barrier function 

through the formation of tight junctions (Barar et al., 2008) and maintenance of tear film stability 

by the projections of microvilli (Collin and Collin, 2006). 
 
The lacrimal gland, the meibomian 
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glands, conjunctival goblet cells,  conjunctival cells, accessory lacrimal glands,  the surrounding 

blood vessels in the conjunctiva and aquaporin-controlled water channels in the cornea and 

conjunctiva all  contribute molecules needed  for maintaining  a healthy tear film. (Ramamoorthy 

et al., 2008; Tiffany, 2008, Verkman et al., 2008).   Normal cell function within these tissues will 

lead to a healthy tear film that functions to provide oxygen, protection, elimination of debris and 

antibacterial and immune functions (Tiffany, 2008). 
 
  The energy required by the cornea comes 

from the diffusion of glucose from the aqueous humor and to a lesser extent from the limbal 

vessels (Myung et al., 2006).    In order for a change in the functionality of the cornea or 

conjunctiva to occur, the physiology of enough cells would need to change above the threshold 

for tolerance.  The cornea is a complex tissue that turns over approximately every 7 to 14 days 

from the division of the stem cells to the ultimate loss of the cells to the tear film after apoptosis 

in the outer layer of the corneal epithelium (Hanna et al. 1961; Chang et al., 2008; Thoft 1983).   

The cells in the conjunctiva also migrate and are replaced by new cells over time (Zajicek et al. 

1995; Chan et al., 2008; Secker and Daniels, 2008).
   

Thus it is a normal renewal process for the 

cells of the cornea and conjunctiva.  Toxicity would result only if the rate of cell death was 

increased or the toxicity impaired normal cell functionality.
  

 

The level at which a change in cell physiology could result in a pathology is difficult to assess.  

Chemicals that have shown toxic effects in vivo can be used as measures of comparison to assess 

if new chemicals and product formulations change the physiological of cells to the level of these 

known toxins.  If the physiological changes are equal to or greater than those of known toxins 

then the chemicals used in these formulations would be considered potential safety hazards.  
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Ideally, since there are many physiological parameters that can be assessed in cells, many 

different physiological assessments should be made for determining whether chemicals are 

potentially hazardous.   A battery of in vitro studies can be performed to look at the most 

relevant physiological changes in cells that could lead to toxicity.  A number of tests that looked 

at different endpoints to assess the effect of contact lens care solutions on cells have been 

investigated  (McCanna et al., 2008; Bantseev et al., 2007; Tchao et al., 2002; Bantseev et al., 

2008; Dutot  et al., 2008;  Oriowo, 2006;  Santodomingo-Rubido and Mori, 2006; Imayasu et al. 

2008; Horwath-Winter et al., 2004;  Wright and  Mowrey-McKee, 2005) .   These studies 

assessed the physiological changes caused by contact lens care solutions measuring the effects 

on metabolism, epithelial tight junctions, production of reactive oxygen species, and activation 

of the P2X7 cell death receptor, mitochondrial integrity, optical quality and cell membrane 

integrity.   

 

4.4.3  Contact Lens Care Solutions and their effect on the epithelium of the lens 

Antimicrobials in contact lens care solutions and active drugs in ophthalmic eye drop products 

have been shown to uptake into contact lenses (Dracopoulos et al., 2007, Kargard et al., 2003, 

Rosenthal et al., 2006; Chapman et al., 1990).    The concentration of chemicals on the contact 

lens surface and in the fluid phase within the contact lenses can influence the concentration and 

exposure time to the chemicals in these products.  Evaluating the interactions between the 

contact lens solution and contact lenses provides additional information that can be utilized in 

assessing product safety. There are four FDA contact lens groups.   Each group is based on the 

percent water within the matrix of the lens and the ionic nature of the polymers.  Karlgard et al. 

http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Oriowo%20MO%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
http://www.ncbi.nlm.nih.gov/sites/entrez?Db=pubmed&Cmd=Search&Term=%22Horwath-Winter%20J%22%5BAuthor%5D&itool=EntrezSystem2.PEntrez.Pubmed.Pubmed_ResultsPanel.Pubmed_DiscoveryPanel.Pubmed_RVAbstractPlus
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(2003) found that ophthalmic drugs will have variable uptake times depending on the chemical 

nature of the contact lens material. The release of the chemical is also dependent on the 

interaction between the lens material and the drug tested.  The uptake of BAK by a soft contact 

lens after 7 days of continuous exposure was shown to be between 30 to 56 micrograms/mg of 

lens using a radioactive tracer (Chapman et al., 1990).  Dracopoulous et al. (2007) studied the 

effects of extracts from four different contact lens products soaked in  1%, 0.1%, 0.01%, 0.001% 

BAK for 24 hours on the bovine lens epithelium. After a 15 minute exposure to these extracts, 

mitochondrial integrity and lens optical properties are degraded as the concentration of BAK 

soaking solution increased.  

 

The toxicity of a chemical on the eye is dependent on the time of exposure and concentration      

( Liu, 1981). 
     

The effect a contact lens care solution bound to a contact lens will have on the 

cornea will depend on the concentration of the chemicals in the lens and on the time of release of 

the chemicals from the contact lens.  The tear film will interact with the chemicals within the 

contact lens and affect the release over time.  Also,
 
tears will flush the eye draining chemicals 

into the nasal lacrimal duct, absorbing them into the mucosal lining and also releasing them into 

the nose (Mochizuki et al., 2008; Zhu and Chauhan, 2008).  In addition,
 
the presence of capillary 

beds allow for the removal of chemicals to the general circulation, minimizing the concentration 

and time of exposure of the chemical to this tissue (Barar et al., 2008).  Thus, the exposure time 

on the cornea depends on the release rate from the contact lens, the washing out of the chemical 

by the tears and the chemical’s removal by adsorption into the tissue and removal by the fluid 

flow in the capillaries. 
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Many in vitro studies have been performed to evaluate the cytotoxicity potential of contact lens 

care formulations.  Investigations have shown that contact lens care formulations will have some 

effects on the cell cultures that are different than the untreated controls.  The studies evaluated 

various aspects of cellular physiology and functionality.  Cytotoxicity can also be defined as the 

degree to which something is toxic to living cells.  Toxic, as it pertains to cells, is defined as 

capable of causing injury or death.   A substance that causes cell death would be toxic to the eye 

if the number of dead cells exceeds the tolerability threshold.  If there is a physiological change 

in a cell due to the presence of a chemical, it is important to know if the physiological change is 

harmful to the cell, or is it just a change from normal that will not result in cell death or a change 

in cell functionality. Since cell death or injury is the result of a large physiological change in the 

cell it is important to note if a chemical causes a deviation from the normal state and design 

follow up experiments should determine if this change could result in toxicity.  

 

A number of studies have been performed that evaluated the acute cytotoxicity potential of 

currently marketed contact lens care products.  These products have been approved by regulatory 

agencies and have been evaluated in long term clinical studies demonstrating their safety.  The 

goal of testing currently marketed products is not to question the conclusions of these clinical 

studies but to highlight the physiological changes that may occur to the cells when the corneas 

are exposed to these products.  Possibly, cells that are altered physiologically may be more 

susceptible to other potential insults to the eye.   Although long term clinical studies have 

demonstrated safety to a certain cohort in a narrowly defined modality use of contact lenses and 
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contact lens care products, the real life use of the products, or the conditions of the patient’s eyes, 

may be very different than the clinical conditions tested.  

 

A contact lens wearer can have additional stresses on their corneas that have not been evaluated 

in a clinical setting.  If a person experiences dry eye they may add a lubricating eye drop to their 

daily lens care regimen.  These eye drops may contain preservatives that will cause additional 

physiological changes to the cornea.  If a cornea already has experienced a physiological change 

from normal due to the effect of a contact lens care product, this additional change may result in 

cytotoxicity.  Also, individuals can expect physiological changes to their cornea due to everyday 

challenges to their eyes.   Typical insults to the eye can result from soap entering the eye while 

showering, chlorine exposure during swimming or chemical exposure to makeup or household 

aerosols.  Because clinical studies do not investigate cohorts that have these additional stresses to 

their corneas, understanding the physiological state of the cells in the cornea after exposure is 

relevant for assessing potential overall health risk to a contact lens wearer.  Corneal cells that are 

in a physiological state that is an extreme deviation from the normal, will die or lose their 

functionality.  Dry eye,  lose of endothelial cells, reduced immune response or breaks in the 

barrier function of the cornea can all result in conditions that put the contact lens wearer at risk 

for ocular damage.  Thus, knowing the physiological changes to cells that occur after exposure to 

chemicals such as contact lens care disinfecting solutions is important for understanding 

potential health risks. 
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Optifree Express and Optifree Replenish caused a greater disruption of the mitochondrial 

integrity of human corneal epithelial cells than the other lens care solution.  Optifree Express 

also was shown to decrease the number of mitochondria in bovine corneas to a greater extent 

than ReNu MultiPlus.  However, the degree of disruption in the bovine cornea was not as great 

as the disruption seen using a monolayer of human corneal epithelial cells.  Bovine corneas were 

exposed to Optifree express and ReNu Multiplus for 30 minutes and mitochondria could be 

counted.  Human corneal epithelial cells exposed to Optifree Express for 5 minutes showed 

complete loss of mitochondrial integrity.  A possible explanation for this difference is related to 

the mass of the tissue being evaluated.  Since the cornea contains a six cell layer epithelium, a 

stroma and an endothelium, there is a large mass of tissue that the contact lens solution will 

dilute into. When using a monolayer, a dilution of the solution into tissue is not possible.  Cell 

monolayers are useful to evaluate the relative toxicity of various chemicals.  However, dilution 

of the chemical into tissue and the transport of the chemical through the tissue should be 

considered in an assessment of potential risk.   Additionally, the differences seen in the toxicity 

of Optifree in the bovine cornea and the cell culture may be due to physiological differences 

between the cornea primary culture and immortalized human corneal epithelial culture impacting 

the effect of this solution on the cells (Yamasaki et al., 2009).   

 

The use of the bovine lens in addition to the use of human corneal epithelial cells can help 

characterize the toxicity of a solution to a multilayered tissue.   AcuVue II lenses soaked in 

Optifree Express did not have a substantial effect on the mitochondrial integrity of the bovine 

epithelial cells after a 19 hour exposure and recovery; whereas BAK treated (0.01% and 0.001%) 
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AcuVue II treated lenses did.  In the eye, there will be a dilution of the contact lens care solution 

in the cornea, conjunctiva and other ocular tissue.  Dilution and retention time in the cells is a 

relevant consideration when identifying the potential risk of the chemical.  Neither in vitro 

corneas nor bovine lenses contain a circulatory system for removal of toxic chemicals. However, 

the cultured bovine lens and the cultured cornea do have a potential sink for the chemical as the 

lens core and the corneal stroma are tissues that a chemical may be able to move into over time.   

The movement of Optifree Express into this sink versus the lack of movement of BAK through 

the tissue may explain the difference between the effects of these solutions on the bovine 

epithelium.  BAK could have had a longer exposure time in the bovine epithelial cells than 

Optifree express, causing increased cytotoxicity.  

 

In vitro molecular biology methods can be used to predict the potential risk of chemicals and 

contact lens solution products.  Use of the bovine lens and human corneal epithelial cells show 

significant toxicity with the known toxin BAK   Assessments of potential toxicity using human 

corneal epithelial cells were sensitive enough to show differences in the effects of contact lens 

solutions on mitochondrial activity.  Evaluations using bovine lenses demonstrated substantial 

differences between a currently used product, Optifree Express, and the toxin BAK. This 

investigation has shown that determining the effects of solutions on the mitochondrial integrity 

of both bovine lens and human corneal epithelial cells can determine the potential toxicity of 

these chemicals and product formulations.  
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Summary and General Conclusions 

 
 

The utilization of in vitro tests with a tiered testing strategy for detection of mild ocular irritants 

can reduce the use of animals for testing, provide mechanistic data on toxic effects, and reduce 

the uncertainty associated with dose selection for clinical trials. This thesis described the 

development of in vitro assays for assessing the toxicity of chemicals and ophthalmic products 

using measurements of effects on tight junctions, organ functionality, and mitochondrial 

integrity. The first chapter of this thesis described how in vitro methods can be used to improve 

the prediction of the toxicity of chemicals and ophthalmic products.  Chapters two, three and 

four demonstrated the sensitivity and relevance of the new in vitro assays.  

 

All of the in vitro assays described in this thesis showed the sensitivity and relevance necessary 

for use in risk assessment.  These in vitro tests were significantly more sensitive than the Draize 

rabbit ocular irritation test.  As shown in table 1, BAK at 0.1% and SDS at 0.3% give scores of  0 

in the Draize rabbit ocular irritation test.  The Draize rabbit test showed some mild scores when 

0.3% BAK and at 1 % SDS solutions were instilled into the rabbits eyes (Klausner et al. 2003).   

The assays for measuring tight junctions, organ functionality and effects on mitochondrial 

acitivity showed toxic effects at substantially lower concentrations than the concentrations that 

caused irritation in the Draize test.  Also these in vitro assays showed effects at the levels of 

BAK that were shown to be toxic using sensitive in vivo animal studies utilizing SEM and 

confocal microscopy. The in vitro studies also showed effects at concentrations of BAK that 

showed toxicity in humans (0.005% -0.01%) BAK.   
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It is the goal of researchers who work on alternatives to animal tests to Refine (decrease the 

severity of the toxicity seen in animal studies), Reduce (Lower the number of animals used in 

these studies), and Replace (replace animal studies with in vitro alternative methods).   By 

utilizing the tiered testing approach that is outlined below in figure 1 the severity of the response 

used in animals will be lowered as chemicals with toxic effects greater than 0.01% BAK will no 

longer be tested in rabbits thus lowering the severity and pain in the animal. Also the number of 

animals used in testing will be reduced as the in vitro tests will be used to screen out toxic 

chemicals and thus reduce the number solutions submiited for animal tests.  

 

The proper utilization of in vitro methods can accurately predict toxic threshold levels and 

reduce animal use in product development. The goal of this research was to develop an in vitro 

test battery that can be used to accurately predict the ocular toxicity of new chemicals and 

ophthalmic formulations. By comparing the toxicity seen in vivo animals and humans with the 

toxicity response in these new in vitro methods, it was demonstrated that these in vitro methods 

can be utilized in a tiered testing strategy in the development of new chemicals and ophthalmic 

formulations reducing the severity of the toxic response in animals and reducing the number of 

animals that need to be utilized in product development.   

Table 1:  Draize Rabbit MMAS scores 

Concentraton 10.00% 5.00% 1.00% 0.30% 0.10% 0.03% 

Benzalkonium 
chloride 

108.0 83.8 45.3 8.67 0 0 

Concentration 30.00% 15.00% 3.00% 1.00% 0.30% 0.10% 

Sodium 
Dodecy 
sulfate 

60.5 59.2 16.0 0.67 0 0 
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Figure 1 
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