4,474 research outputs found

    Optimal dynamic remapping of parallel computations

    Get PDF
    A large class of computations are characterized by a sequence of phases, with phase changes occurring unpredictably. The decision problem was considered regarding the remapping of workload to processors in a parallel computation when the utility of remapping and the future behavior of the workload is uncertain, and phases exhibit stable execution requirements during a given phase, but requirements may change radically between phases. For these problems a workload assignment generated for one phase may hinder performance during the next phase. This problem is treated formally for a probabilistic model of computation with at most two phases. The fundamental problem of balancing the expected remapping performance gain against the delay cost was addressed. Stochastic dynamic programming is used to show that the remapping decision policy minimizing the expected running time of the computation has an extremely simple structure. Because the gain may not be predictable, the performance of a heuristic policy that does not require estimnation of the gain is examined. The heuristic method's feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiprocessor. The results suggest that except in extreme cases, the remapping decision problem is essentially that of dynamically determining whether gain can be achieved by remapping after a phase change. The results also suggest that this heuristic is applicable to computations with more than two phases

    Thermoradiation inactivation of naturally occurring organisms in soil

    Get PDF
    Samples of soil collected from Kennedy Space Center near spacecraft assembly facilities were found to contain microorganisms very resistant to conventional sterilization techniques. The inactivation behavior of the naturally occurring spores in soil was investigated using dry heat and ionizing radiation, first separately, then in combination. Dry heat inactivation rates of spores were determined for 105 and 125 C. Radiation inactivation rates were determined for dose rates of 660 and 76 krad/hr at 25 C. Simultaneous combinations of heat and radiation were then investigated at 105, 110, 115, 120, and 125 C. Combined treatment was found to be highly synergistic requiring greatly reduced radiation doses to accomplish sterilization

    Thickness dependence of spin-orbit torques generated by WTe2

    Full text link
    We study current-induced torques in WTe2/permalloy bilayers as a function of WTe2 thickness. We measure the torques using both second-harmonic Hall and spin-torque ferromagnetic resonance measurements for samples with WTe2 thicknesses that span from 16 nm down to a single monolayer. We confirm the existence of an out-of-plane antidamping torque, and show directly that the sign of this torque component is reversed across a monolayer step in the WTe2. The magnitude of the out-of-plane antidamping torque depends only weakly on WTe2 thickness, such that even a single-monolayer WTe2 device provides a strong torque that is comparable to much thicker samples. In contrast, the out-of-plane field-like torque has a significant dependence on the WTe2 thickness. We demonstrate that this field-like component originates predominantly from the Oersted field, thereby correcting a previous inference drawn by our group based on a more limited set of samples.Comment: 8 pages, 8 figure

    Photoionization of Galactic Halo Gas by Old Supernova Remnants

    Full text link
    We present new calculations on the contribution from cooling hot gas to the photoionization of warm ionized gas in the Galaxy. We show that hot gas in cooling supernova remnants (SNRs) is an important source of photoionization, particularly for gas in the halo. We find that in many regions at high latitude this source is adequate to account for the observed ionization so there is no need to find ways to transport stellar photons from the disk. The flux from cooling SNRs sets a floor on the ionization along any line of sight. Our model flux is also shown to be consistent with the diffuse soft X-ray background and with soft X-ray observations of external galaxies. We consider the ionization of the clouds observed towards the halo star HD 93521, for which there are no O stars close to the line of sight. We show that the observed ionization can be explained successfully by our model EUV/soft X-ray flux from cooling hot gas. In particular, we can match the H alpha intensity, the S++/S+ ratio, and the C+* column. From observations of the ratios of columns of C+* and either S+ or H0, we are able to estimate the thermal pressure in the clouds. The slow clouds require high (~10^4 cm^-3 K) thermal pressures to match the N(C+*)/N(S+) ratio. Additional heating sources are required for the slow clouds to maintain their ~7000 K temperatures at these pressures, as found by Reynolds, Hausen & Tufte (1999).Comment: AASTeX 5.01; 34 pages, 2 figures; submitted to Astrophysical Journa

    Observations of X-rays and Thermal Dust Emission from the Supernova Remnant Kes 75

    Full text link
    We present Spitzer Space Telescope and Chandra X-ray Observatory observations of the composite Galactic supernova remnant Kes 75 (G29.7-0.3). We use the detected flux at 24 microns and hot gas parameters from fitting spectra from new, deep X-ray observations to constrain models of dust emission, obtaining a dust-to-gas mass ratio M_dust/M_gas ~0.001. We find that a two-component thermal model, nominally representing shocked swept-up interstellar or circumstellar material and reverse-shocked ejecta, adequately fits the X-ray spectrum, albeit with somewhat high implied densities for both components. We surmise that this model implies a Wolf-Rayet progenitor for the remnant. We also present infrared flux upper limits for the central pulsar wind nebula.Comment: 7 pages, 2 tables, 4 figures, uses emulateapj. Accepted for publication in Ap

    Climate-induced changes in river flow regimes will alter future bird distributions

    Get PDF
    Anthropogenic forcing of the climate is causing an intensification of the global water cycle, leading to an increase in the frequency and magnitude of floods and droughts. River flow shapes the ecology of riverine ecosystems and climate-driven changes in river flows are predicted to have severe consequences for riverine species, across all levels of trophic organization. However, understanding species' responses to variation in flow is limited through a lack of quantitative modelling of hydroecological interactions. Here, we construct a Bioclimatic Envelope Model (BEM) ensemble based on a suite of plausible future flow scenarios to show how predicted alterations in flow regimes may alter the distribution of a predatory riverine species, the White-throated Dipper (Cinclus cinclus). Models predicted a gradual diminution of dipper probability of occurrence between present day and 2098. This decline was most rapid in western areas of Great Britain and was principally driven by a projected decrease in flow magnitude and variability around low flows. Climate-induced changes in river flow may, therefore, represent a previously unidentified mechanism by which climate change may mediate range shifts in birds and other riverine biota

    Shocked Molecular Hydrogen in the 3C 326 Radio Galaxy System

    Full text link
    The Spitzer spectrum of the giant FR II radio galaxy 3C 326 is dominated by very strong molecular hydrogen emission lines on a faint IR continuum. The H2 emission originates in the northern component of a double-galaxy system associated with 3C 326. The integrated luminosity in H2 pure-rotational lines is 8.0E41 erg/s, which corresponds to 17% of the 8-70 micron luminosity of the galaxy. A wide range of temperatures (125-1000 K) is measured from the H2 0-0 S(0)-S(7) transitions, leading to a warm H2 mass of 1.1E9 Msun. Low-excitation ionic forbidden emission lines are consistent with an optical LINER classification for the active nucleus, which is not luminous enough to power the observed H2 emission. The H2 could be shock-heated by the radio jets, but there is no direct indication of this. More likely, the H2 is shock-heated in a tidal accretion flow induced by interaction with the southern companion galaxy. The latter scenario is supported by an irregular morphology, tidal bridge, and possible tidal tail imaged with IRAC at 3-9 micron. Unlike ULIRGs, which in some cases exhibit H2 line luminosities of comparable strength, 3C 326 shows little star-formation activity (~0.1 Msun/yr). This may represent an important stage in galaxy evolution. Starburst activity and efficient accretion onto the central supermassive black hole may be delayed until the shock-heated H2 can kinematically settle and coolComment: 27 pages, 7 figures, accepted for publication in the Astrophysical Journa

    Innovative Development of a Cross-Center Timeline Planning Tool

    Get PDF
    The Payload Operations Integration Center (POIC) at Marshall Space Flight Center (MSFC) is the United States focal point to support operations controllers and payload developers conducting payload science operations for the National Aeronautics and Space Administration (NASA) aboard the International Space Station (ISS). Some of the key functions are planning, coordination and scheduling of science activities. This effort occurs in coordination with other NASA centers, international partners, and payload developers. The ability to efficiently plan and re-plan in response to change is critical to the flight planning teams. Additionally, in Fall 2017, NASA will increase its ability to perform payload science operations aboard the ISS with a fourth crew member. In order to support this, there will be an increasing need to quickly plan and schedule more activities. In the past, it was cumbersome and time-consuming to consolidate copious amounts of planning and change request data from various sources. Planners would summarize information from the Johnson Space Center (JSC) Operations Planning Timeline Integration System (OPTIMIS) and manually integrate it with other data in order to produce a Timeline Planning Summary (TPS). This lengthy process of updating static documents while planning and re-planning was cumbersome, introduced human error, and was inflexible to last minute changes. There was a need for a dynamic, more efficient, less erroneous, and more concise way of building a report that could be readily updated as fast as payload science plans change

    Innovative Development of a Cross-Center Timeline Planning Tool

    Get PDF
    The Payload Operations Integration Center (POIC) at Marshall Space Flight Center (MSFC) supports planning, coordination and scheduling of science activities for the International Space Station (ISS) in coordination with other NASA centers, international partners, and payload developers. The ability to efficiently plan and re-plan in response to change is critical to the flight planning teams. With the achievement of supporting a fourth crew member aboard the ISS and an increasing amount of payload science activities, came the need for a dynamic, more efficient way of building timeline planning reports that could be readily updated as fast as payload science plans could change. This paper addresses software architecture considerations in the successful cross-center development of an automated planning tool with multiple data sources. It also discusses the practical implementation of a time-boxed, hybrid Agile Software Development (ASD) approach to deliver customer-driven value despite changing requirements with respect to low-Earth orbit operational planning activities. The goal of this paper is to open discussion with members of the international community and trade effective strategies for cross-center architectural and customer-developer driven collaborations, to support increasing utilization of planning and conducting science activities in space
    • …
    corecore