
i

, I

- ~~

NASA Contractor Repofi 178344

ICASE REPORT NO. 87-49

ICASE
OPTIMAL DYNAMIC REMAPPING OF PARALLEL COMPUTATIONS

i

David M. Nicol

Paul F . Reynolds , Jr.

Contract No. NAS1-18107
J u l y i987

(NASA-CR-178344) OPTXBAL DY l A E I C REBAPPltlYG Y87-27436
GI PARALLEL CCBPGIAIXCPS F i n a l AeFort
(N A S A) 39 p A v a i l : IOTIS BC AOJ/WP A01

CSCL 098 Unclas
6316 1 0092569

INSTITUTE FOR COMPUTER APPLICATIONS IN SCIENCE AND ENGINEERING
NASA Langley Research Center, Hampton, Virginia 23665

Operated by the Universities Space Research Association

National Aeronautics and
Space Administrabon
LsrrgleyResemrchCartr
Hampton.Virgnm 23665

https://ntrs.nasa.gov/search.jsp?R=19870018003 2020-03-20T09:34:41+00:00Z

Optimal Dynamic Remapping of Parallel Computations

David M . Nicol
Institute for Computer Applications in Science and Engineering

and
The College of William and Mary

Paul F. Reynolds, Jr.
University of Virginia

ABSTRACT

A large class of computations are characterized by a sequence of phases, with phase changes
occurring unpredictably. We consider the decision problem regarding the remapping of workload to
processors in a parallel computation when (i) Ihe uiility of remapping md the future behavior of the
workload is uncertain, and (ii) phases exhibit stable execution requirements during a given phase, but
requirements may change radically between phases. For these problems a workload assignment gen-
erated for one phase may hinder performance during the next phase. This problem is treated formally
for a probabilistic model of computation with at most two phases. We address the fundamental prob-
lem of balancing the expected remapping performance gain against the delay cost.

Stochastic dynamic programming is used to show that the remapping decision policy minimizing
the expected running time of the computation has an extremely simple structure: the optimal decision at
any decision step is followed by comparing the probability of remapping gain against a threshold.
However, threshold calculation requires a priori estimation of the performance gain achieved by remap
ping. Because this gain may not be predictable, we examine the performance of a heuristic policy that
does not require estimation of the gain. In most cases we find nearly optimal performance if remapping
is chosen simply when the probability of improving performance by remapping is high. The
heuristic’s feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiproces-
sor. Our results suggest that except in extreme cases, the remapping decision problem is essentially
that of dynamically determining whether gain can be achieved by remapping after a phase change; pre-
cise quantification of the decision model parameters is not necessary. Our results also suggest that this
heuristic is applicable to computations with mofe than two phases.

This research was supported in part by the National Aeronautics and Space Administration under NASA Con-
tract NAS1-18107 while the first author was in residence at ICASE, Mail Stop 132C. NASA Langley Research
Center, Hampton, VA 23665. It was also supported in part by the Virginia Center for Innovative Technology
while both authors were in residence at the University of Virginia. Deuartment of Computer Science, Thomton
Hall, Charlottesville, VA 22903.

i

1. Introduction

An important issue in parallel processing is the assignment of workload to processors. A common

model of this problem is to assume that a program is composed of a number of communicating

modules, and that each module is to be assigned to a processor in the target parallel system. The
b

assignment algorithm takes a global view of the system, and must consider processors’ capacity, any

special affinity a module has for a processor (e.g. a module may q u i r e assignment to a processor with

a floating point accelerator), module execution requirements, inter-module communication, and any

access to files and data structures that a module may require. An assignment algorithm may assign files

to storage devices as well, so we will speak of the mapping of the computation, rather than the assign-

ment of modules. One might also view this as a static scheduling of the computation’s components.

We will assume that global communication is significantly more costly than local communication, as in

a message passing architecture.

Any reasonable mapping algorithm must take into account the expected behavior of the mapped

computation, because the efficiency of a parallel computation depends heavily on how well its mapping

both exploits available parallelism, and minimizes the communication and synchronization overhead.

Both of these factors are determined by the underlying stochastic behavior of the computation. Loosely

defining a phase to be a period during which a computation’s behavior exhibits some characteristic

particular to the phase, we are interested in computations having multiple phases. Multiple phases may

arise in a number of ways. Some algorithms explicitly have different phases and different behavior dur-

ing each phase; a computation may also change its behavior in response to the behavior of partial

results within the computation or in response to input that drives it. If during run-time a phase changes

and causes a mismatch between mapping and behavior, performance will deteriorate. It may then be

desirable to dynamically remap the computation. Because of the complicated considerations often

involved in task and file assignment, it may not be feasible to allow processors to move modules, files,

- L-

and data structures around in a dynamic decentralized fashion. A global mapping (or remapping) algo-

rithm is better able to consider all aspects of the assignment problem, especially if the parallel system

is tightly coupled. In this paper we view dynamic remapping as the dynamic invocation of a static

mapping or scheduling algorithm, as a function of the computation’s observed behavior.

Parallel scientific computations typically divide workload by partitioning a grid-like data domain.

Such computations are composed of numerical calculations at each point in a discretized spatial (or

transformed) domain. Workload assignment involves partitioning the domain into regions which are

then mapped to processors [2]. A processor is responsible for all computations on grid points within

regions assigned to it. Data partitioning is attractive because it can effectively exploit parallelism. Par-

titions are relatively simple to compute, and static partitions are simple to manage at run-time. To

dynamically remap a data partitioned computation, a new partition and mapping is centrally computed

and reported to the processors who then exchange whatever data is necessary to effect the change.

Remapping might be desirable if the number of domain points in a processor’s region changes, or if

the calculations required at the domain points change. A good example of this phenomenon is the

behavior of adaptive gridding techniques used in the solution of time-dependent partial differential

equations [3]; grid points are adaptively added and subtracted from the domain in order to resolve

interesting (and transient) features in the solution. While the solution is well behaved very few addi-

tional grid points are required. Grid points are added in response to some phenomenon appearing

(unpredictably) in the solution. Since the domain is originally partitioned by physical region, a large

patch of additional grid points can be defined within one processor’s region, creating imbalanced work-

load and poor performance. We will later illustrate this situation with a fluid dynamics code that

employs dynamic regridding. Many other numerical techniques adaptively change the grid in response

to solution behavior and may thus exhibit phase-like behavior, for examples see [l].

,

- 3-

In both of the fore-mentioned types of computation, we can expect run-time behavior to change

abruptly, and to the detriment of run-time performance. If the behavior of the computation is com-

pletely understood and predictable, then the costs and benefits of remapping can be calculated and

weighed against each other. When the phase changes, the action minimizing the computation's remain-

ing execution time can be calculated simply, making the decision problem a nonissue. However, it is

much more reasonable to assume that the computation's behavior is not completely understood, and

that there is uncertainty in the length of the computation, the occumnce of the phase change, and in

the benefits of remapping. This is likely to be the case if the computation is driven in real-time by

external data. Dynamic remapping might still improve performance, but remapping raises a number of

issues including (1) whether to use global remapping or decentralized and localized remapping, (2)

determining when a phase change occurs, and whether remapping after the change will improve perfor-

mance, (3) determining a new mapping and its implementation, (4) estimating the gains and costs of

remapping, (5) determining the performance loss of not remapping after a phase change, and (6)

optimally choosing when to remap. This paper treats only the latter issue, which must balance all

costs, gains, and uncertainities involved in the decision to remap. We do illustrate solutions to the other

issues for our model fluids problem; in general the other issues are problem and system dependent, and

are important research issues in their own right. We focus on the remapping decision problem because

it brings whatever solutions are found for a l l of the other issues (aside from (1)) together in a cohesive

bundle.

Most of the literature related to remapping takes rather different views of the problem. "he work

reported in [8], [111, and [29] essentially presumes that jobs arrive at a central dispatcher that assigns

jobs to processors. This model of computation behavior does not fit our view of parallel computations.

A more recent body of work including [IO], [la], [26], [27], [30] allows decentralized assignment

decisions to be made dynamically. We feel that it is also important to investigate centralized assign-

ment decisions, especially as technology is successfully driving down the cost of inter-processor

-4-

communication. Static and dynamic task assignment algorithms are presented in [2], [4], [7], [9], [12],

[15], [13], [21], [28]. The dynamic assignment algorithms consider restricted classes of computations;

the static assignment algorithms might be used in conjunction with a remapping decision policy if the

statically assigned computations abruptly change behavior. A treatment of dynamic remapping of

parallel computations whose behaviors change constantly and gradually is given in [20]; we focus here

on behavior that changes radically, and abruptly. This paper is an extension of earlier treatments of this

problem in [181; the major difference is this paper’s inclusion of multiprocessor results while the work

in [18] studies simulations of this problem. Our approach is a variation on aspects of the broad mat-

ment of change detection under uncertainty given in [22]. Our model modifies this analysis by using a

different decision cost structure, and by assuming a random computation duration.

This paper shows how to model the remapping decision problem formally as a Markov decision

process. Under this model, we demonstrate that the decision policy minimizing the expected running

time of the computation has a simple threshold structure: at every decision step in the computation we

compute the gain probability that remapping immediately will improve performance, and compare that

probability to a threshold pre-calculated specifically for that decision step. Remapping is chosen if the

probability exceeds the threshold, otherwise the present mapping is retained. Recognizing that some

parameters needed for the threshold calculation may not be known in practice, we investigate the per-

formance of a decision heuristic that chooses remapping as soon as the gain probability exceeds some

fixed threshold. This heuristic does not presume knowledge of the performance gain achievable by

remapping. The heuristic was tested on an adaptive fluid dynamics code implemented on a multiproces-

sor, and was found in most cases to give nearly optimal performance. Our results show that for these

types of problems the key issue is not how much performance gain is possible by remapping, but

whether any gain is possible. While the model is formulated to allow at most two phases, our results

suggest that more complicated models are not necessary. So long as the phases do not occur more

rapidly than remapping’s ability to amortize costs with gains, our model can be applied by always

-5-

considering “the next” phase change.

The remainder of the paper is organized as follows. Section 2 describes an adaptive fluid dynam-

ics code used to illustrate concepts employed by our analytic model; we also use it to report on

dynamic remapping’s measured performance. Section 3 describes our analytic decision model, and

identifies important functions related to the remapping problem. Section 4 discusses the optimal deci-

sion policy, showing that it is a threshold policy. An optimal algorithm for approximating these thres-

holds is discussed, and the behavior of the optimal thresholds is examined. Section 5 reports on the

performance of an adaptive fluids code which employs dynamic remapping; this code is implemented

on the F l e a 2 multiprocessor[l4]. Performance using dynamic remapping is shown to be substantially

superior to the performance of static mapping. Section 6 presents our conclusions, and the Appendix

treats analytic issues in detail.

2. A Remapping Model Problem

A one-dimensional fluid dynamics code seIves as a model problem. The code numerically simu-

lates the density p(r,t) and velocity v(r,t) of a compressible fluid flowing through a tube, as a function

of position r and time t. Our implementation employs the ETBFCI’ code [SI which solves the general

continuity equation

where C1, D 1 , D,, D3 are problem dependent constants or functions. For simplicity our experiments set

all of these to zero. The one dimensional tube model is initially discretized with a grid having one

point every h spatial units; we will call this the coarse grid. We assume that the value of p is known

at every grid point at time t = 0, that the fluid flows from left to right, and that the density and velocity

values of fluid entering the tube are given as needed. Presented with the density and velocity values

of p throughout the domain at time to and the density of fluid entering the tube at time b+At,

-6-

ETBFCI' numerically integrates the continuity equation in t to solve for fluid behavior at time to + Ar.

Variant computational behavior is caused by employing an adaptive gridding technique proposed

in [3]. Every 5Af time units the solution behavior is examined, and additionalfine grid points with a

spacing of h/6 are added in subregions where the examination predicts that truncation error will exceed

a user defined limit (this mechanism is quite detailed and is beyond the scope of this paper). Every

coarse grid point in such a region has a corresponding fine grid point at exactly the same tube position

Similarly, fine grid points are removed from regions where they are no longer needed (coarse grid

points are never removed). Figure 1 illustrates how patches of grid points might be applied to the

domain. At time to, the computation first integrates only the coarse grid, from time to to time + At.

Then, each fine grid is integrated 6 times where each integration uses a time step of Ad6; boundary

values at the ends of subgrids are interpolated from the corresponding coarse grid values. After fully

integrating the fine grids. function values at coarse grid points covered by !he grid points are replaced

with the improved function values from the corresponding fine grid points. In its fullest generality, the

method described in [3] allows a recursive attachment of h e r grids to fine grids. For our purposes

only two levels of grid points are necessary to cause load imbalance.

Two factors dominate the execution time of a parallel implementation of our fluids code: com-

munication cost and computation cost. Using ETBFCT the density at position ro at time to + At

depends functionally on the density values for all grid points between ro - 5h and ro + 5h at time fO

(approximately 50 floating point operations are used to update the density at a coarse grid point). This

dependence requires inter-processor communication for points that are functionally dependent but

reside on different processors. The domain decomposition and assignment illustrated in figure 2

assigns an equal length of domain to every processor. If processor j is assigned a partition interval con-

taining points [ro, . . . , ro + Mh], then processor j must send points [ro, . . * ,rot4h] to processor

j-1, and will receive points [ro-6h, . . , rO-h] from processor fi1. A similar exchange with the

- 7-

P

Fig. 1 Regridding in One-Dimensional Domain

- 8-

interval's right boundary points is undertaken with processor j+l. When the computation uses only a

coarse grid, this standard assignment minimizes the volume of data that must be communicated

between processors. Fine grid points tend to be placed in regions where the solution is changing shar-

ply, and these regions tend to migrate from left to right as the computation progresses. The dynamic

nature of fine grid creation and migration can pose severe load balancing problems if the standard

assignment is used, again shown in figure 2. Figure 3 illustrates the concept of wrapping: more parti-

tions than processors are defined and then the partition assignment "wraps" around all processors. Each

partition again covers an equal length of the domain. Fine grid intervals have a larger chance of being

spread across processors, and so a better load balance can be expected.' However, a wrapped assign-

ment requires more inter-processor communication due to the increased number of partition interfaces.

In fact, a wrapped assignment requires more computation because of a fixed additional computation

cost associated with every partition regardless of size. Consequently, the standard assignment is pre-

ferred when little or no dynamic regridding is occurring, while a wrapped assignment is preferred

when dynamic regridding causes serious load balancing problems.

Consider the situation where the tube initially has nearly constant density and velocity. As long

as fluid entering the tube continues to have this density and velocity very little regridding will occur.

Now imagine that the behavior of the inflowing fluid is determined by a real-time process that at some

time begins to behave as a wave, and sometime later return to constant behavior. When a moving

wave is in the tube, regridding may cause severe load imbalance. There is a short period between when

the wave first enters the tube, and when it has propagated far enough into the tube to allow a wrapped

assignment to be of some benefit. We say that the computation's phase changes at the end of this

period rather than at the beginning. Consequently the computation's phase change lags behind the

physical system's change at the tube's entry point. Another phase change occurs close to the time

.

A study of wrapped assignments is given in "Principles for Problem Aggregation and Assignment in
Medium Scale Multiprocessors", D.M. Nicol and J.H. Salk, ICASE Report 87-39.

-9-

Processor

P

6 : : : : : : : : : : :

I
I
I

: : : : : : : : : : : : : : : : : A

Load

0

l------
Processor

2 3
I

Fig. 2 Standard Assignment and Load Balance

-10-
Processor

P ,$j I

I : : : : : : : : ” ’ . ” ” ”

I I I I

I

Load

r

0 2

I

1 3

Processor

Fig. 3 Wrapped Assignment and Load Balance

-11-

where the wave completely leaves the tube. Again we define the computation’s phase change in terms

of when it is advantageous to remap back to the standard assignment.

At the first phase change, switching from the standard mapping to a wrapped mapping may

improve the load balance at the price of more communication. A number of issues have to be dealt

with if dynamic remapping is to be successfully employed. First, a supervisory process must be able

to determine whether performance is better under the standard mapping or under a wrapped mapping.

This is accomplished at every regridding time, by requiring every processor to describe (or approxi-

mate) to the supervisor its new spatial distribution of grid points. The supervisor then has a picture of

workload distribution throughout the entire domain. The supervisor can use its knowledge of the

number of operations done at a grid point to estimate computation costs under different mappings. It

is important to note that a certain amount of estimation e m r is unavoidable, and that the potential for a

wrong estimate must be dealt with by a remapping policy. A second issue is how we view the remap

ping problem. This paper considers only one option, that remapping is an activity that occurs infre-

quently and in response to significant behavior change. Another option is to remap more frequently

and tailor each new assignment to the computation’s behavior as observed at the time of remapping

[20]. A third issue concerns the mechanics of changing from the standard assignment to a wrapped

assignment. Because both the standard and wrapped assignments are defined in terns of fixed length

domain intervals, it is straightforward for a processor to break up its single large interval into smaller

intervals, and to calculate each small interval’s new processor location. All data associated with a

small interval is communicated to the appropriate processor; consequently, remapping requires a sub-

stantial volume of grid points and function values to be communicated. A fourth issue is the one

addressed formally by this paper: the decision when and if to adopt a wrapped assignment. The key

factors making the remapping decision a non-trivial problem are the uncertainty in the performance

estimates under different mappings, the uncertainty in the fluid’s future behavior, and uncertainty in the

time of termination (which may depend on solution behavior). The mathematical model developed in

-12-

the next Section deals formally with these factors.

3. A Remapping Decision Model

Our application of decision process theory requires that we identify a sequence of deckion steps

in the computation. Every time a decision step is reached, a supervisory process decides whether or

not to remap, based on the supervisory processes’ knowledge of the computation and behavior within

different phases. Our model problem’s decision steps are the regridding times. Iterations in an itera-

tive numerical program can serve as decision steps, and natural decision steps could be found in an

embedded real-time system that periodically calls monitoring tasks. We define cycle i to be the period

of computation between decision steps i and i+l . The time required to execute a cycle, a cycle time, is

assumed to be random with a known and finite mean. For the model problem this randomness

describes uncertainty in cycle execution time, particularly as regridding and its effect on performance is

not completely predictable. We do nut assume that cycle time distributions are independent. For

simplicity’s sake we assume that at most one phase change will occur during the course of the compu-

tation. Our empirical results show that carefully determined decision policies are not needed, suggest-

ing that the additional complexity of mathematically treating more than one phase change is not

worthwhile.

In the model problem, the time required to execute a cycle depends both on the mapping in use,

and the phase. Consequently we define four mean cycle times in the table below:

Original second
New first
New second

In the model problem e p 2 I?F reflects the additional communication cost of a wrapped assignment

when load balancing is not needed; likewise eB 2 eR reflects the bad performance caused by load

-13-

imbalance under the standard assignment.

Our decision model describes different types of uncertainty in the remapping problem. The uncer-

tainty in termination time is captured by allowing the number of cycles in the computation, N, to be

random. We assume that N is bounded from above by some constant M, and that N is independent of

the occurrence of a phase change (the independence assumption can be relaxed, but it complicates the

analysis). Another source of uncertainty arises as we cannot be sure when or if better performance is

possible by remapping. In the model problem this is the uncertainty in when a wave may enter the tube

and cause a phase change. This uncertainty is modeled by presuming that the occurrence of a phase

change leading to potential remapping gain is random. For the sake of tractability we suppose that the

index of the cycle during which the phase change occurs is geometrically distributed, with parameter Q.

Q may be thought of as a phase change rate. Consequently, for every n, Q is the probability that the

phase change happens at cycle n given that it has not happened before cycle n. Another source of

uncertainty is related, but is perhaps more subtle. At a decision step we will employ some (problem

dependent) mechanism to test for remapping gain. This mechanism might look for a decline in proces-

sor utilizations, or it might be able to examine what code has recently been executed. For example,

grid point distributions are used in the model problem to estimate costs under different mappings.

Based on such examinations, the mechanism can give us some indication of whether a new mapping is

called for, but we cannot be certain that the mechanism is absolutely reliable. It might prematurely

report the possibility of gain, or it might fail to report an existing possibility of gain. In the model

problem this type of uncertainty arises because only a simple model of program behavior is used to

estimate costs; the simplicity intmduces some approximation error. This type of uncertainty is

modeled by assuming that every invocation of the mechanism has a probability a of prematurely

reporting possible gain, and a probability p of failing to report an existing possible gain.

-14-

At every decision step in the computation the decision policy decides whether or not to remap.

The decision algorithm consults the gain testing mechanism described above, but is distinct from that

mechanism. This is especially important because the gain testing mechanism can give a false report.

Faced by high remapping costs and poor performance in the event of premature remapping, we do not

want to remap simply because one consultation of the gain testing mechanism suggests remapping.

Instead, we will compute a gain probubiliry that is calculated as a function of the response received

from the gain testing mechanism. The gain probability calculated at step n is the probability that if we

remap immediately, then the subsequent per cycle execution time would be smaller than if we do not

remap. For the model problem this is the same as the probability that the phase has changed (since the

phase change there is defined in terms of when remapping leads to performance gains). Formally, let

X be the random variable describing the first decision step after which remapping leads to performance

gain. We assume that remapping at step n when n 2 X leads to better performance, while remapping

at n when n e X does not. The gain probability at step n is denoted p,,. and is simply

pn = Prob(XI n) .

The probability po is taken to be zero. If the first gain test detects no possibility for gain, we have evi-

dence that there is no immediate gain from remapping. But the probability of remapping gain can no

longer be zero since it is possible for a phase change to have occurred during the first cycle, and it is

possible for remapping gain to be achieved, and it is possible that the test mechanism failed to detect

the potential gain. The true value of the gain probability in this case depends on the values of $ (the

probability that the phase changes in the first cycle) and p (the probability that an existing phase

change is not detected). Similar observations hold if potential gain is reported. Bayes’ Theorem [25]

gives us a mechanism for calculating this probability. To use Bayes’ Theorem at the nfh step it is

necessary to first compute an a priori probability p,(p), which is the pre-test probability that gain is

possible at the nrh step, given that the probability of possible gain at the (n-1)sf step was p:

-15-

This expression adds the probability that gain is already possible at the (n-1)st step to the probability

that it is not possible at step n-1 but will become possible precisely at step n. The gain testing

mechanism's report at step n gives further information about the possibility of gain; Bayes' Theorem is

used to combine that information with pa@). If A is an event space partitioned by events

AI, A2,

that the a posteriori conditional probability of Ai given that B is observed is

. Ak, and if B is some observed event (not necessarily in A), then Bayes' Theorem states

Prob(Ai)Prob{B I Ai) Prob(Ai IB) =

(A,)P& (B I Ai)
j=1

Let A, be the event that gain is possible at step n, A, be the event that gain is not possible at step n,

and let B represent the gain detection mechanism report. Prob(Al) prior to B's observation is pa@),

and Prob(A2) = 1 -pa@); 1 - p is the probability that the mechanism reports gain given that gain is

possible; and a is the probability that gain is reported given that gain is not possible. If a positive gain

report is observed, we use the formulation described above to calculate pn

Given a negative indication of potential gain, pn is similarly defined by p"@):

We require one other related probability. Let qc@) be the probability that the gain detection mechanism

reports potential gain at step n, given that pe l = p . By conditioning on whether gain is actually possi-

ble by step n, it is not difficult to see that

qC@) = Pa@)(l - PI + (1 - p,@)>a. (4)

The probability of the mechanism reporting no gain at step n given pn-, = p is simply

-16-

A decision to remap incurs two explicit costs. First, there is a delay cost of calculating the

remapping, followed by the cost of implementing the new mapping. The first cost does not exist in the

model problem, as the wrapped assignment is either computed prior to run-time, or at the time of the

gain testing. We combine the two explicit remapping costs costs into a single remapping overhead cost

D. We summarize our decision model definitions below.

General decision processes define process states. At step n the state of our remapping decision

process is the pair <pn,n>. At every decision step, the option chosen by a decision process incurs a

cost whose value depends on the chosen option, and on the current process state. The goal is to find a

decision policy that minimize the expected sum of costs incurred by the decisions. The costs incurred

by our remapping decision process model the expected cycle time of the cycle following the decisiQp,

and any remapping overhead costs. For example, if a phase change has occurred but the old mapping

is retained, then eB is the expected cycle time of the next cycle. If remapping is chosen when gain is

achievable, then an overhead cost of D is suffered, but then every remaining cycle has a mean

Notation Definition
n Decision Step Number
N
M Upper Bound on N
Nn

eF
e,
eP
eR
D
a
P
$

pa@)
p"@)
p"@)

4@)

Random number of decision points

N given N 2 n

Pre-Gain Execution Time, Original Mapping
Post-Gain Execution Time, Original Mapping
Pre-Gain Execution Time, New Mapping
Post-Gain Execution Time, New Mapping
Delay to Calculate and Implement New Mapping
Gain Test False Alarm Error
Gain Test Missed Gain Error
Phase Change Gain Rate
A Priori Probability of Gain At Next Decision Step
A Posteriori Probability of Gain After Positive Gain Observation
A Posteriori Probability of Gain After Negative Gain Observation

Probability of Not Observing Gain Next Observation

f i n E[Nnl

I 4c_(p) Probability of Observing Gain Next Observation

- i

I

-1 7-

execution time of eR. The total computation execution time is the sum of all cycle times plus remap

ping overhead; an optimal decision policy minimizes the expectation of this sum. We see that the

optimal decision policy should depend somehow on the various costs and gains involved in the remap

ping process, the remaining length of the computation, and the degree of our certainty that gain is pos-

sible. One way to express the inter-relationships among all of these concerns is as a stochastic dynamic

programming problem. Given gain probability p at step n, let V(<p,n>) denote the expected remaining

execution time of the computation if we use the optimal decision policy. In the parlance of Markov

decision processes [23], V(<p,n>) is the optimal (stationary) cost function. If we choose to retain the

old mapping at step n, the next cycle's expected execution time is

PeB + (l - P k F .
Now let E,,(<p,n>) be the expected remaining execution time after step n+l, using the optimal decision

policy, given gain probability p at step n and retention of the mapping at step n. Since Ev(<p,n>)

describes optimal decision policy costs after step n+l, it is stated in terms of V(< ,n+l>). E,,(< ,n>)

is a function expressing expected values, taken with respect to the probability of reporting potential

gain at step n+l. Given pn = p , p H l is equal to p"(p) if the mechanism at step n+l reports potential

gain. this occurs with probability (F(p). Similar observations apply in the event that no change is

observed. It follows that

~,(<pm) = <@)v(<p"(p),n+l>) + q%)v(<p%),n+l>). (5)

The expected execution time remaining after step n, achieved by keeping the old mapping now and

thereafter using the optimal decision policy is consequently

C,(<p,n>) = pes + (1 - p)eF + E,(<p.n>).

We call C, the retain cost function.

We similarly define C,,,(<p,n>), the remap cost function. C,,,(<p.n>) is the expected remaining

execution time achieved by choosing to remap now. By choosing to remap, we immediately incur an

-18-

overhead cost D. If remapping gain is actually possible, every remaining cycle will have mean time

eR; there are a mean number I?,, - n + 1 cycles remaining (reca that I?,, is the expected value of N

given N 2 n). Letting X be the first step after which gain is possible, we see that the remap cost func-

tion at <p,n> conditioned on X I n is

C,(<p,n> I x I n) = D + (fin - n + 1)eR.

If remapping is chosen prematurely, we assume that this is determinable after suffering the cost D *,

that the computation uses the old mapping for cycle n, and that the decision process is free to choose

remapping at a later step. Knowing that remapping is premature affects the gain probability: it

becomes zero. The remap cost function at <p,n> conditioned on X > n is thus

C,,,(<p,n> I X > n) = D + eF + E,(cO,n>).

Combining these expressions gives the unconditional remap cost function

C,,,(<p,n>) = D + p(t?,, - n + 1)eR + (1 - p)(eF + E,(<O,n>)). (7)
This formulation assumes that once remapping is chosen and gain is found, the decision process stops

and no further remapping is considered. This is not realistic for a computation with more than two

phases, but does allow a tractable treatment of the remapping decision problem. We will later argue

that a more complicated multi-phase model is probably not necessary. Finally, we will find it con-

venient to define C,(<p,n>) and C,,,(cp.n>) for n > N: C,(<p,n>) = 0 and C,,,(<p,n>) = D. It is clear that

once the computation stops we want to "retain" and not ",map".

The optimal decision from state <p,n> is given in terms of C,,,(<p,n>) and C,(<p,n>). The PinCi-

ple of optimality states that

and that the optimal decision at step n given p,, = p is the decision whose cost function minimizes the

%ur results are not substantially affected if we do not assume this checking ability. The form of the
remap cost function changes, but the single threshold decision policy is still derivable. The model fluids problem
is actually better suited to the modified formulation.

-19-

8

right hand side of the equation above. The following section shows that V(c - ,n>) has a useful smc-

ture, and that the optimal decision from state 9,- is nicely characterized.

4. Optimal Decision Policy Thresholds

The gain probability is a key factor in our decision process. In this section we show that the

optimal decision policy is a threshold policy: for every step n there is a threshold Z,,E [0,1] such that

the optimal decision in state <p,m is to remap if p > z,,, and retain if p I z,,. We then show why

exact calculation of the thresholds (IC,,) is computationally intractable, report on an optimal approxima-

tion technique having bounded emr , and graphically illustrate the behavior of the { z,,) as a function of

n.

The following lemma provides the fundamental reasons for the optimal policy structure. Its proof

is somewhat lengthy, and is given in the Appendix.

LEMMA 1 :
For all n, C,(<p,n>) is a linear function of p ;
For all n, C,(<p,n>) is a piecewise linear concave function of p ;
There exists [Op] such that for all n 2 5, C,(<p,n>) 5 C,,,(<p,n>) €or all PE [0,1];
If n < 5. C,(<l,n>) I C,(<l,n>).

Consider the implications of Lemma 1. For any step n 1 5, the retain decision cost function is

always less than the remap decision cost function, implying that we should retain regardless of the

value of the gain probability. In this caset the optimal decision threshold is degenerate, p,, = 1. For

n e no we know that the linear remapping cost function is less than the concave retain cost function at

p = 1. It is therefore geometrically impossible for C,(<.,n>)*s functional curve to intersect C,(c.,n>)’s

functional curve more than once, as illustrated by figure 4. If C,(<.,n>) and Cm(<.,n>) intersect at

z,, < 1, then C,(<p,m) is less than C,(<p,n>) for p E [O,IF,], and C,(<p,n>) is less than C,(<p,n>) for

p E [a,,,I]. It follows that the optimal decision from state <p,n> is to retain if p I z,, and to remap if

-20-

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0 .8 0.9 1.0

Fig. 4 Intersection of C,(<p,n>) and C,(cp,n>)

-21-

p > IC,. We summarize this result:

THEOREM 1 : For every step n, there exists a IC, such that the optimal decision from cp,n> is to
remap if and only if p > IC,.

0

If all of the decision model parameters are known, then in theory we can solve the equations

describing V(<p,n>) and determine each optimal threshold. In practice there are significant obstacles to

this procedure. Most importantly, we may not be able to quantify the model parameters. In addition, a

computational problem arises from the fact that the optimal cost functions V(< - ,n>) are all piece-wise

linear. If a piece-wise linear function changes its linear description at domain point d, we will call d a

transition point. For any piece-wise linear function g on [0, 11, let S(g) be the set of g's transition

points. In [17] we show that

S(C,(c ,n-l> I Na)) = (4 1 0 I pc(q) = d or p'(q) = d for some d E S(V(c . ,n> I N=m)).
This means that every transition point for V(< - ,n> I N=m) can give rise to two distinct transition

points for C,(c ,n-l> I N=m). Any of these transition points greater than I C , ~ will not appear in

S(V(<. ,n-l> I N w)) ; nevertheless, we see that the number of %ne segments defining V(< ,e)

essentially doubles at every step of the recursive solution. Then in general, an exact solution is not

computationally feasible. However, in [17] we describe an approximation procedure that estimates

V(< ,n>) to any desired degree of accuracy. Furthermore, at every step this p m d u r e is linear in the

number of transition points, and over a broad class of approximations, it minimizes the number of tran-

sition points required to achieve the desired accuracy. Our computational experience with this approxi-

mation shows that it is quite efficient . With the scale of parameter values we used, generally fewer

than 200 transition points in the approximation bounded the error in approximating V(< ,n>) for each

n by

-22-

Figure 5 illustrates the behavior of the optimal thresholds for four different sets of parameter

values. For computational simplicity, the number of cycles in the computation was assumed to be con-

stant. The optimal thresholds tend to remain relatively constant, except for n nearest N. Note also that

as the per cycle gain G = eB - f?R increases (for fixed D), the converged value of the optimal threshold

decreases. This is completely intuitive, because the smaller the gain from remapping is, the more cer-

tain we should be that gain is possible before choosing remapping and suffering the attendant over-

head. Another tendency is that the region where n,, = 1 increases as D increases. It is also intuitively

obvious that this should be true, because the expected overall remapping gain depends on the expected

remaining length of the computation. If this is small, then a large remapping overhead may not be

amortized, and it is better to simply suffer the "bad" cycle times eE until termination. While the

behavior of the optimal thresholds is quite intuitive, it is also important to remember that N is random,

and is not known prior to the computation. Optimal remapping requires the computation to rely upon

the threshold's ability to balance costs and uncertainties. The optimal decision thresholds precisely

account for termination time uncertainty in a way that the unaided computation cannot.

5. Remapping the Model Problem on a Multiprocessor

To illustrate the utility of dynamic remapping, the model fluids problem described in section 2

was implemented on the Fled32 [14] multiprocessor at the NASA Langley Research Center. The Flex

has 20 processors, each having about 1M bytes of local memory. All processors have bus access to a

2M byte common memory. The model problem was written using a message passing paradigm; the

Flex's common memory was used solely to implement message passing. In addition, the message-

passing software was written to allow the simulation of longer message passing delays than would oth-

erwise be suffered. Our experiments employed this feature to demonstrate that the heuristic need not

precisely quantify costs in order to work well.

-23-

1.0

0.9

0.8

0.7

0.6

7c, 0.5

0.4

0.3

0.2

0.1

D = 3 0 0 0

D = 3 0 0 0 G = 150

D = 2 0 0 G = 50

r

55 60 65 70 15 80 85 90 95 100

n

Fig. 5 Behavior of n,,

-24-

512 coarse grid points were used, spread across sixteen processors. Each computation consisted

of 400 basic time-steps, leading to 80 decision steps. A computation tended to require a few minutes of

wallclock running time (the best speedup for this problem size was only about 7; speedup improves by

increasing the size of the grid, but increasing the size of the grid increases the wallclock running time,

a scarce resource). Our experiments compared the performance of the heuristic remapping policy (with

p = 0.7) with the performance of (1) a static standard assignment, (2) a static wrapped assignment with

four partitions to each processor, and (3) an optimal policy created by solving for the (IC,,] using

estimated problem parameters . Our experiments show that if the entry time of a wave is unknown,

then our remapping heuristic strongly outperforms either static mapping. The heuristic and the optimal

policy are seen to have nearly identical performance. These results were achieved under varyiqg simu-

lated costs of communication.

Our experiments use a coarse grid spacing of h = 0.25, and a basic time step of Ar = 0.925. The

fluid velocity at a point is taken to be the fluid density at the point. The fluid density is initially con-

stant at 5.0 throughout the tube. Entering wave densities are centered at 5.0, have amplitude 0.25, have

period 8.0, and last for 1.6 units of time. 4 is taken to be 1/400, a and p a ~ e both taken to be 0.1.

The cycle time values required for the optimal policy calculation were estimated as s h w n below

by averaging measured cycle times within different phases.

9.96
7.4
I .2

There is a discrepancy between t.e behavior of the model problem an^ the analytic model: cycle times

The optimal policy here used a slightly different decision model. The modified model does not employ a
checking mechanism after computing a new partition, so that a premature decision causes performance to suffer
due to unnecessarily high communication costs. This latter decision model better reflects the behavior of the
model problem.

actually depend on whether the entire wave is in the tube. ..s more of a wave enters the tube, more

regridding occurs in the wave region, and the cycle times rise. Consequently there is a transition period

between the initial entry of the wave, and the time when the entire wave is present in the tube. The

analytic model does not capture the transition period, and consequently the "optimal" decision policy

thresholds we calculate are not truly optimal. The effects of this error are discernible, but not profound.

Figure 6 plots the relative difference between d n g times under constant threshold remapping,

and the two static mapping policies discussed in section 2. Figure 6 plots data from runs which did

not artificially delay communication, and from runs which did. The extra simulated communication

costs added approximately three and one half milliseconds to the transmission time of every 32 word

message packet. The vertical axis plots the relative difference (T,-TJITd, where T, is the running time

under a static mapping, and Td is the running time under dynamic remapping. For example, a plotted

value of 0.5 for some statically mapped problem means that the static mapping's running time is 50%

worse than that of dynamic remapping for that same problem. The horizontal axis plots the fraction of

the computation occumng before the wave enters the tube. This fraction has a strong impact on the

running times of the static mappings. When the wave is present fer &most the entire ccmputation,

then naturally the standard static mapping will suffer severely while the static wrapped assignment

enjoys the benefits of load balancing. Similarly, if the wave does not enter the tube until near the

computatioq's termination then the static standard mapping will enjoy low communication volume

while the static wrapped assignment is forced to communicate much more boundary infomation. The

critical observation is that chosing a static mapping when there is uncertainty in the wave's entry

creates significant risk that the wrong static mapping is chosen. This same observation will hold if the

computation undergoes more than one phase change: significant performance losses are suffered when-

ever the mapping is mismatched with the computation's phase. It is clear that dynamic remapping

effectively deals with these performance problems. It is also clear that while the additional communica-

tion delay does affect performance, the heuristic still works well. This is important, because the gain

-26-

Relative
Diference

1.0

0 . 9

0.8

0.7

0.6

0.5

0 . 4

0.3

0.2

0.1

Standard

high \\ cost

0.1 0.2 0.3 0 . 4 0.5 0.6 0.7 0:8\ 0:9 1.0

\ Wave Entry Time Fraction

Fig. 6 Performance of Static Mapping Relative to Dynamic Remapping

-27-

measurement mechanism did not employ estimates of communication costs. Similar results were noted

with other choices of problem parameters, and other fluid behavior (e.g. an entering square wave).

We did not plot the performance of the optimal policy because it is so close to the heuristic's.

For al l but the rightmost sample point the optimal policy was less than 0.1 percent faster than the

heuristic (and never slower). In fact, the optimal thresholds (0.925) during the early part of the low-

cost-communication computation were significantly higher than the fixed threshold (0.7) ; before decid-

ing to remap the optimal policy generally required one more positive gain report than the heuristic pol-

icy did. The heuristic did 3% better than "optimal" when the wave entered just at the end of the com-

putation. This minor discrepancy arises because the analytic model over-estimates the benefit of

remapping during the wave's entry transition period. The heuristic's near optimality supports the same

observation made with the simulation study reported in [19].

The data presented in figure 6 indicates that precise quantification of remapping gain is not neces-

sary. The gain testing mechanism was written so that communication costs were not considered, yet

the heuristic worked nearly optimally for two different communication cost functions. The poor show-

ing of the static wrapped assignment shows the severe effect that unnecessary communication has on

performance, and yet the remapping policy provides substantial gains without any consideration at all

of this cost. The fact that there is gain is enough to achieve that gain. The relatively low cost of

remapping is a strong contributing factor to this good performance. We can expect the volume of

remapping communication (and hence its cost) to be much larger for adaptive gridding in two and

three dimensions. In this case intelligent remapping decision policies are even more important to ensure

good performance.

The statistical updating of p n plays an important role in the heuristic's good performance. Our

experience with the code shows that false alarms from the gain testing mechanism occur often enough

to make them a potential problem. If we were to remap whenever the gain mechanism indicated gain

-28-

was possible we would often be premature. The Bayesian updating of pn combined with a reasonably

high decision threshold provides good protection against premature remapping.

Another important factor in the heuristic’s good performance is the fact that the length of time

between a phase change and program termination was generally long enough to amortize the cost of

remapping. The heuristic should work equally well on computations with more than one phase, pro-

vided that the average time between phase changes is long enough and the remapping gain large

enough to amortize the cost of remapping between phases.

The data reported here is obviously not an exhaustive performance study of dynamic remapping,

although extensive testing of a simulation model[19] supports the conclusions suggested by our fluids

code data, and supports our contention that the two-phase model presented here is adequate for compu-

tations with more phases. Our current research includes more extensive testing of different types of

remapping on different problems and different architectures. Rather, the data we present should be

taken as an existence proof of the utility of dynamic remapping. Much more work is needed before

the user of a general parallel code can intelligently determine whether his code benefits from remap

ping, and what form that remapping should take.

6. Conclusions

An effective mapping of workload to processors in a parallel processing system must make cer-

tain assumptions about the computation’s running behavior. The behavior of many computations is

characterized as a sequence of phases, where behavior within a phase is fairly stable, but the behavior

between two phases can be quite different. It is therefore possible for a mapping to become ineffective

when a phase change occurs, so that dynamically remapping the computation may be required to main-

tain good performance. The decision to remap must take into account the performance gains and costs

involved, and must deal with uncertainty in remapping gains, the computation’s future behavior, and

the computation’s termination time. We have modeled this decision problem with a Markov decision

-29-

process, and determined the structure of the optimal decision policy. However, calculation of this pol-

icy requires estimation of parameters that may not be known a priori. We therefore studied the perfor-

mance of a simple threshold heuristic that does not assume knowledge of remapping’s costs and gains.

A study of this heuristic on a multiprocessor fluids code shows that this heuristic works remarkablely

well, and shows that the remapping decision problem does not require precise estimates of these

parameters. The key issue for the remapping decision problem is thus seen to be the relatively accurate

assessment of when remapping leads to performance gains.

There are certainly limitations to the approach we’ve taken here. To use our policy it is neces-

sary to have enough fore-knowledge of the computation to be able to write code that dynamically

analyzes behavior and looks for remapping gain. It was straightforward to analyze the model fluids

problem, but even there we needed to know how much work was associated with every grid point, and

that the work at every point was essentially identical. We anticipate that looking for remapping gain is

a non-trivial problem with more complicated non-numerical codes. Until a method is developed to

automatically test for remapping gain for a general problem, our approach is not a good candidate for

an automatic load balancing policy at the operating system level. Nevertheless, there will always be

codes that people agonize over in order to get the best possible performance; when those codes have

unpredictable phase-like behavior our approach can significantly improve performance.

- 30-

Appendix

In this appendix we prove Lemma 1 from section 3, and discuss an algorithm for approximating

V(c - ,n>). We first prove Lemma 1.

Proof of Lemma I

Some of our analysis conditions on the value of N. We use the notation g(<p,n>W=m) to denote

the value of function g at state <p,n> given that N = m. We will also say that a function g is plcc if it

is piece-wise linear, continuous, and concave.

Lemma 1’s first claim is that for every n, C,(<p,n>) is a linear function of p . This is easily seen

from its definition in equation (6). Lemma 1’s second claim is that for every n, C,(<p,n>) is a plcc

function of p . This result follows primarily from the following lemma reported in [22] and stated in

terms of our notation:

LEMMA A-1 : Suppose that N = m . If V(<p,n+l>lN=m) is a plcc function of p , then
E,,(<p,n>W=m) is a plcc function of p .
0

Lemma 1’s second claim is established by showing that for every fixed n 2 0, V(<p,n>) and C,(<p,n>)

are plcc functions of p . First condition on N = m for some m. Recalling that we have defined

C,(<p,n>) =.O and C,,,(<p,n>) = D for n >m, it is clear that V(<p,n>) = C,(<p,n>) = 0 for n > m. For

n I m we will show inductively that V(<p,n>W=m) and C,(<p,n>W=m) are plcc functions of p . For

the base case let n = m. For any p E [0,1],

C,(Cp,m>W=??l) = PeB + (1 - p)eF + Ev(<pJ?DW=m)

= pes + (1 - p)eF
since V(<p,m+l>lN=m) = 0 for all p . We also observe that C,(<pp~W=m) is plcc since it is linear.

The class of plcc functions is closed under the point-wise minimum operation; V(<p,mlN=m) must

also be plcc, establishing the induction base.

-31-

For the induction hypothesis we suppose that both C,(cp,n+l>W=m) and V(cp,n+l>lNm) are

plcc functions of p for some n 5 m - 1. Lemma A-1, and the closure of plcc functions under addition

and point-wise minimum again ensure that C,(<p,n>) and V(cp,n>) are p k c functions of p , completing

the induction.

To complete the proof, we note that the class of plcc functions is also closed under scalar multi-

plication, and observe that

and

To help establish Lemma 1’s third and fourth claims, we analyze the values of C,,,(<p,n>) and

C,(cp,n>) at p = 1. Key results are given by Lemma A-2.

LEMMA A-2 : Either

(i) V(e1.m) = C,,,(cl,n>) for all n for which Prob(N = n)&; or

(ii) V(cl,n>) = C,(cl,n>) for all n for which Prob(N = n)&; or

(iii) There exists an 4 (possibly -) such that for all n c 4, V(cl ,n>) = C,(cl,n>), and for all n 2 no

for which Prob(N = n)&, V(cl,n>) = C,(<l,n>).

PROOF: We condition on N = m, for any 0 Im 5 M. Let K be the largest integer such that

(eB - eR).K I D. Simple algebra (omitted here) establishes the inductive proof that for all n such that

m - K c n I m.

V(cl,n>W=m) = C,(<l,n>W=m) = (m - n + I)eB;

and that for 0 5 n I m - K ,

V(<l,n>W=m) = C,,,(<l,n>lN=m) = D + (m - n + l)eR

-32-

and

C,(<l,n>lN=m) = es + D + (m - tt)f?R.

Defme d(nlN=m) to be the conditional difference C,,,(<l,n>W=m) - C,(<l,n>W=m), and d(n) to be the

unconditional difference C,,,(<l,n>) - C,(<l,n>). From the equations above, we see that

for n > m
d(nlN=m) = D - (ee - e&(m - n + 1) form - K e n S m.

(eR - ee) for n I rn - K I"
It follows from the definition of K that d(nlN=m) is an increasing function of n. From this we infer that

d(n) increases in n, since

d(n+l) - d(n) = Prob(N = m) (d(n+lW=m) - d(nlN=m)J 2 0.
W l

This relation shows that C,,,(<l,n>) - C,(<l,n>) is increasing in n. Then case (i) occurs if d(n) is

negative for all n, case (ii) occurs if d(n) is positive for all n, and case (iii) occurs if d(n) changes sign

at n = 4.

To establish Lemma 1's third claim we will show that C,(<p,n>) is linear in p whenever n 2 4.

Since C,(<.,n>) is always linear, and C,(<O,n>) 5 C,,,(<o,n>) for all n, and C,(<l,n>) I Cm(<ltn>)

when n 2 it follows directly that C, and C,,, cannot intersect, so that C,(<p,n>) 5 Cm(<p,n>) for all

p E [O, 11.

LEMMA A-3 : If n 2 no, then C,(<p,n>) is linear in p , and V(<p,n>) = C,(<p,n>) for all p E [O,lI.

PROOF: We proceed by induction. M is the largest integer such that Prob(N = M) # 0, so that

V(<pM+l>) = 0 for all p and

-33-

v(<p,~>) = rob(^ = M J C ~ < ~ , M >) = rob(^ = M) [eB + (1 - p)eF]

which is linear inp. The induction base is thus satisfied.

For the induction hypothesis, we suppose there is an n > such that V(<p,n+l>) = C,(<p,n+l>) for all

p E [0,1], and that C,(<p,n+l>) is linear in p. We know that

V(<p,n+l>) = A*p + B

and that Pa(P)(l - PI
#(PI

for some A and B. Equations (2), (3), and (4) show that that pc(p) =

; it follows that Pa@@ P"@> = -
47P)

cf(<p,m) = PeB + (1 - p)eF + Apa(p) + B
which is linear in p since p,(p) is linear in p. Since C,,,(<p,n>) and C,(<p,n>) cannot intersect it fol-

ing the induction.

-34-

References

[l] I. Babuska , Ed. Adaptive Computational Methoak for Partial Differential Equatiuns, SIAM,
Philadelphia, 1983.

[2] M.J. Berger, S. Bokhari, The Partitioning of Non-Uniform ProblemsJCASE Report No. 85-55,
November 1985.

[3] M.J. Berger, J. Oliger, Adaptive Mesh Refinement for Hyperbolic Partial Differential Equations,
Journal of Computational Physics, vol. 53, (1984), 484-512.

[4] S. Bokhari, Partitioning Problems in Parallel, Pipelined, and Distributed Computing, ICASE
Report Nu. 85-54, November 1985.

[SI D.L. Book, Ed., Finite-Direrence Techniques for Vectorized Fluid Dynamics Calculations,
Springer-Verlag, New York, 198 1.

[6] G. Browning, H.-0. Kreiss, J Oliger, Mesh Refinement, Mathematics of Computation, Vol. 27,
(1973), pp 29-39.

[7] W.W. Chu, L.J. Holloway. M. Lan, and K. Efe, Task Allocation in Distributed Data Process-
ing, Computer, 13, 11 , November 1980. 57-69.

[8] Y. Chow and W. KowNer, Models for Dynamic Load Balancing in a Heterogeneous Multiple
Processor System, IEEE Trans. on Computers, C-28, 5 , (May 1979). 354-361.

[9] T. C. Chou and J. A. Abraham, Load Balancing in Distributed Systems, lEEE Trans. on
Software Eng., 8 , 4 (July 1982), 401-412.

[lo] D.L. Eager, E.D. Lazowska, J. Zahojan, Adaptive Load Sharing in Homogeneous Distributed
Systems, IEEE Trans. on Software Engineering, Vol SE-12. No. 5 , (May 1986). 662-675.

[ll] G. J. Foschini, On Heavy Traffic Diffusion Analysis and Dynamic Routing in Packet Switched
Networks, in Computer Pe@mnance, K. M. Chandy and M. Reiser Eds. New Yo&: North-
Holland, 1977.

[12] D. Gusfield, Parametric Combinatorial Computing and a Problem of Program Module Distribu-
tion, Journal of the ACM, 30, 3 , July 1983, 551-563.

[13] P.R. Ma, E.Y.S. Lee, and M. Tsuchiya, A Task Allocation Model for Distributed Computing
Systems, IEEE Trans. on Computers, C-31, I , January 1982, 41-47.

[14] N. Matelan, The F l e a 2 MultiComputer, Proc. 12th International Symposium on Computer
Architecture, Computer Society Press, Los Alamitos, CA, June 1985, 209-213.

-35-

[15] D.I. Moldovan and J.A.B. Fortes, Partitioning and Mapping Algorithms into Fixed Size Systolic
Arrays, IEEE Trans. on Computers, C-35, I , (January 1986). 1-12.

[16] L. M. Ni, C. Xu, and T.B. Gendreau, A Distributed Drafting Algorithm for Load Balancing,
IEEE Trans. on Sofhvare Engineering, SE-11, 10, October 1985, 1153-1161.

[17] D. M. Nicol and P. F. Reynolds, Jr., The Automated Partitioning of Simulations for Parallel
Execution, University of Virginia Department of Computer Science Tech Report TR-83-15,
August 1985.

[18] D. M. Nicol and P. F. Reynolds, Jr., An Optimal Repaxtitioning Decision Policy, ICASE Report
No. 86-7, Feb., 1986.

[19] D. M. Nicol and P. F. Reynolds, Jr., Dynamic Remapping Decisions in Multi-Phase Parallel
Computations, ICASE Report No. 86-48, Sept., 1986.

[20] D. M. Nicol, J. H. Saltz, Dynamic Remapping of Parallel Computations With Varying Resource
Demands, ICASE Report No. 86-45, July 1986.

[21] C.C. Price, U.W. Pooch, Search Techniques for a Nonlinear Multiprocessor Scheduling Prob-
lem, Naval Research Logistics Quarter&, 29, 2, June 1982, 213-233.

[22] A. Rapoport, W. E. Stein, and G. J. Burkheimer, Response Models for Detection of Change, D.
Reidel Publishing Company, Boston, 1979.

[23] S. Ross, Applied Probability Models with Optimization Applications, Holden-Day, San Fran-
cisco, 1970.

[24] S. Ross, Stochastic Processes, Wiley and Sons, New York, 1983.

[25] S. A. Schmitt, An Elementary Introduction to Bayesian Statistics, Addison- Wesley, 1969.

[26] J. A. Stankovic, An Application of Bayesian Decision Theory to Decentralized Control of Job
Scheduling, IEEE Trans. on Computers, C-34.2 (Feb 1985). 117-130.

1271 J. A. Stankovic, K. Ramamritham and S. Cheng, Evaluation of a Flexible Task Scheduling
Algorithm for Distributed Hard Real-Time Systems, IEEE Trans. on Computers, C-34, 12
(December 1985), 1130-1 143.

[28] H.S. Stone, Critical Load Factors in Distributed Computer Systems, IEEE Trans. on Software
Engineering, SE-4.3 (May 1978). 254-258.

[29] D. Towsley, Queueing Network Models with State-Dependent Routing, Journal of the ACM,
27, 2 (April 1980) 323-337.

-36-

[30] A. N. Tantawi and D. Towsley, Optimal Static Load Balancing, Journal of the ACM, 32, 2
(April 1985). 445-465.

Standard Bibliographic Page

1. Report No. NASA CR-178344
ICASE Report No. 87-49

2. Government Accession No. 3. Recipient’s Catalog No.

16. Performing Organization Code

&. Title and Subtitle

OPTIMAL DYNAMIC REMAPPING OF PARALLEL COMPUTATIONS

7 . Author(s)

David M. Nicol and Paul F. Reynolds, Jr.

5. Report Date

July 1987

8. Performing Organization Report No.

87-49

3. erfor in Or izat’ n Na e and dd s
fnst fiuse %r Fompunter kppyications in Science

10. Work Unit No.
505-90-21-01

and Engineering
Mail Stop 132C, NASA Langley Research Center
Hampton, VA 23665-5225

12. Sponsoring Agency Name and Address

National Aeronautics and Space Administration
Washington, D.C. 20546

11. Contract or Grant No.
NASl-18107

13. Type of Report and Period Covered

Contractor Report
14. Sponsoring Agency Code

17. Key Words (Suggested by Authors(s))

load balancing, parallel computations,
nultiprocessors, Markov decision
3rocessors

15. Supplementary Notes

Langley Technical Monitor:
Richard W. Barnwell

18. Distribution Statement

61 - Computer Programming and
66 - Systems Analysis
Unclassified - unlimited

Software

Final Report

19. Security Classif.(of this report)
Unclassified

Submitted to the IEEE Trans.
Compu t .

20. Security Classif.(of this page) 21. No. of Pages 22. Price
Unclassified 38 A0 3

16. Abstract
A large class of computations are characterized by a sequence of phases, with phase changes

occurring unpredictably. We consider the decision problem regarding the remapping of workload to
processors in a parallel computation when (i) the utility of remapping and the future behavior of the
workload is uncertain, and (ii) phases exhibit stable execution requirements during a given phase, but
requirements may change radically between phases. For these problems a workload assignment gen-
erated for one phase may hinder performance during the next phase. This problem is mated formally
for a probabilistic model of computation with at most two phases. We address the fundamental prob-
lem of balancing the expected remapping performance gain against the delay cost.

Stochastic dynamic programming is used to show that the remapping decision policy minimizing
the expected running time of the computation has an extremely simple structure: the optimal decision at
any decision step is followed by comparing the probability of remapping gain against a threshold.
However, threshold calculation requires a priori estimation of the performance gain achieved by remap
ping. Because this gain may not be predictable, we examine the performance of a heuristic policy that
does not require estimation of the gain. In most cases we find nearly optimal performance if remapping
is chosen simply when the probability of improving performance by remapping is high. The
heuristic’s feasibility is demonstrated by its use on an adaptive fluid dynamics code on a multiproces-
sor. Our results suggest that except in extreme cases, the remapping decision problem is essentially
that of dynamically determining whether gain can be achieved by remapping after a phase change; pre-
cise quantification of the decision model parameters is not necessary. Our results also suggest that this
heuristic is applicable to computations with more than two phases.

For sale by the National Technical Information Service, Springfield, Virginia 22161
N A S A Langley Form 63 (June 1985)

- - - - _ .

