435 research outputs found
Closed-Cycle, Frequency-Stable CO2 Laser Technology
These proceedings contain a collection of papers and comments presented at a workshop on technology associated with long-duration closed-cycle operation of frequency-stable, pulsed carbon dioxide lasers. This workshop was held at the NASA Langley Research Center June 10 to 12, 1986. The workshop, jointly sponsored by the National Aeronautics and Space Administration (NASA) and the Royal Signals and Radar Establishment (RSRE), was attended by 63 engineers and scientists from the United States and the United Kingdom. During the 2 1/2 days of the workshop, a number of issues relating to obtaining frequency-stable operation and to the catalytic control of laser gas chemistry were discussed, and specific recommendations concerning future activities were drafted
Catalyst for carbon monoxide oxidation
A catalyst is disclosed for the combination of CO and O2 to form CO2, which includes a platinum group metal (e.g., platinum); a reducable metal oxide having multiple valence states (e.g., SnO2); and a compound which can bind water to its structure (e.g., silica gel). This catalyst is ideally suited for application to high-powered pulsed, CO2 lasers operating in a sealed or closed-cycle condition
Rare-isotope and kinetic studies of Pt/SnO2 catalysts
Closed-cycle pulsed CO2 laser operation requires the use of an efficient CO-O2 recombination catalyst for these dissociation products which otherwise would degrade the laser operation. The catalyst must not only operate at low temperatures but also must operate efficiently for long periods. In the case of the Laser Atmospheric Wind Sounder (LAWS) laser, an operational lifetime of 3 years is required. Additionally, in order to minimize atmospheric absorption and enhance aerosol scatter of laser radiation, the LAWS system will operate at 9.1 micrometers with an oxygen-18 isotope CO2 lasing medium. Consequently, the catalyst must not only operate at low temperatures but must also preserve the isotopic integrity of the rare-isotope composition in the recombination mode. Several years ago an investigation of commercially available and newly synthesized recombination catalysts for use in closed-cycle pulsed common and rare-isotope CO2 lasers was implemented at the NASA Langley Research Center. Since that time, mechanistic efforts utilizing both common and rare oxygen isotopes have been implemented and continue. Rare-isotope studies utilizing commercially available platinum-tin oxide catalyst have demonstrated that the catalyst contributes oxygen-16 to the product carbon dioxide thus rendering it unusable for rare-isotope applications. A technique has been developed for modification of the surface of the common-isotope catalyst to render it usable. Results of kinetic and isotope label studies using plug flow, recycle plug flow, and closed internal recycle plug flow reactor configuration modes are discussed
Effect of ration level and dietary docosahexaenoic acid content on the requirements for long-chain polyunsaturated fatty acids by juvenile barramundi (Lates calcarifer)
Juvenile barramundi were fed one of six diets containing differing docosahexaenoic acid (DHA) and eicosapentaenoic acid (EPA) levels. Fish were restricted fed on a pair-fed feeding regime to eliminate variability in feed intake, with two diets fed to satiety to examine the effects of fixed or variable feed rations on EFA requirements. Weight gain, feed intake, feed utilisation, and physical clinical signs were monitored. No effect of dietary DHA and EPA concentration, DHA:EPA ratio or total LC-PUFA level was observed on weight gain, growth rate, feed conversion ratio (FCR), survival or physical clinical health signs (P>0.05). Satiety fed fish had higher feed intake, final weight, weight gain and growth rate compared to their respective restrictively fed treatments (P<0.05). No effect of ration level on the responses to DHA concentration was observed. Body fatty acid composition was affected by diet, increasing dietary DHA resulted in higher body tissue DHA concentration, and a similar relationship was observed for EPA. Plasma haemoglobin increased with increasing DHA+EPA levels (P<0.05) while glutamate dehydrogenase increased for fish fed DHA+EPA in a 1:1 ratio, regardless of total dietary LC-PUFA (P<0.05). Juvenile barramundi may be fed diets containing as low as 1gkg-1 DHA without compromising growth or health status. 
An analysis of the effects of different dietary macronutrient energy sources on the growth and energy partitioning by juvenile barramundi, Lates calcarifer, reveal a preference for protein-derived energy
It is generally considered that fish respond to dietary energy densities on a consistent basis irrespective of what macronutrient source the dietary energy originates from. To test this assumption, two experiments were undertaken to establish the different roles of protein, lipid and starch as energy sources in underpinning nutritional bioenergetics in juvenile barramundi, Lates calcarifer. To do this, a range of ingredients were evaluated for their digestible protein (DP) and digestible energy (DE) value. Following this, a series of diets were formulated to an equivalent DE basis, and observed a minimum DP:DE ratio required for fish of 80 g. However, in each of the diets the proportion of DE available from protein, lipid or starch was varied to bias the contribution of each macronutrient on the origin that DE when fed to the fish. Growth of fish fed the protein diet was better than those fed the lipid diet, which was better than those fed the starch diet. Feed intake was lower in the protein diet than the lipid diet, and both were lower than the starch diet. Feed conversion was most efficient in the protein diet fed fish, which was better than the lipid diet fed fish, which was better than the starch diet fed fish. Whole fish composition varied among treatments, with differences observed in the dry matter composition, whole body lipid and gastrointestinal tract lipid content. Typically, lipid and dry matter composition were in synchrony and were usually higher in the starch fed fish and lower in the lipid fed fish. When flux of protein, lipid and energy was assessed in terms of deposition efficiencies, some significant differences were observed. Protein deposition efficiency was relatively conservative, but ranged from 33% in the starch diet fed fish to 41% in the lipid diet fed fish. Lipid deposition efficiency was more dramatic; ranging from 40% in the lipid diet to 182% in the starch diet. Energy deposition efficiency was relatively conservative among treatments, ranging from 50% to 56% efficient. Overall, the results from this study show that there is a clear hierarchy in preference for energy substrates by juvenile barramundi, such that protein > lipid > starch
Pt/SnO2-based CO-oxidation catalysts for long-life closed-cycle CO2 lasers
Noble-metal/tin-oxide based catalysts such as Pt/SnO2 have been shown to be good catalysts for the efficient oxidation of CO at or near room temperature. These catalysts require a reductive pretreatment and traces of hydrogen or water to exhibit their full activity. Addition of Palladium enhances the activity of these catalysts with about 15 to 20 percent Pt, 4 percent Pd, and the balance SnO2 being an optimum composition. Unfortunately, these catalysts presently exhibit significant decay due in part to CO2 retention, probably as a bicarbonate. Research on minimizing the decay in activity of these catalysts is currently in progress. A proposed mechanism of CO oxidation on Pt/SnO2-based catalysts has been developed and is discussed
Dietary astaxanthin levels affect colour, growth, carotenoid digestibility and the accumulation of specific carotenoid esters in the Giant Tiger Shrimp, Penaeus monodon
The carotenoid astaxanthin (Axn) plays a vital role in shrimp pigmentation, with direct influence on product quality, and forms a significant cost component of shrimp aquaculture feeds. However, the effects of dietary Axn on other measures of shrimp physiological performance are varied, and the efficiency of carotenoid uptake from the diet and deposition in shrimp tissues is poorly defined. This study fed juvenile shrimp (Penaeus monodon) diets that contained 0, 25, 50 or 100 mg kg-1 Axn for 6 weeks. Shrimp fed carotenoid-free diets had significantly reduced colour and growth than those fed carotenoids, but survival was unaffected. Carotenoid digestibility improved as dietary carotenoid levels increased, and was 98.5% in shrimp fed 100 mg kg-1 Axn. After 6 weeks, whole body carotenoid levels were significantly depleted in 0 or 25 mg kg-1 fed shrimp, compared with those fed 50 or 100 mg kg-1 or compared with initial shrimp. This study also showed that Axn monoesters were enriched with saturated fatty acids, whereas Axn diesters were enriched with monounsaturated and polyunsaturated fatty acids. Combined, these studies demonstrate that a total dietary carotenoid intake of between 25 and 50 mg kg-1 Axn is required for normal shrimp growth and health in P. monodon. Evidence suggests that there is a functional role for the accumulation of carotenoids and the formation of specific Axn fatty acid esters, and these may be linked to the metabolism, storage, mobilization or deposition of Axn within various tissues
An evaluation of the complete replacement of both fishmeal and fish oil in diets for juvenile Asian seabass, Lates calcarifer
An experiment was conducted to examine the potential for the complete replacement of fishmeal (FM) and fish oil (FO) in diets for barramundi,Lates calcarifer. A series of diets were formulated to the same digestible protein and energy specifications, but which were designed with FM inclusion levels at 300, 200, 100 or 0g/kg and FO at 100%, 30%, 15% or 0% of the added oil in the diets (4×4 factorial design). Ricebran oil was the alternative oil used in the growth study, while soybean meal and poultry meal were the main alternative protein sources used. For the growth study, fish of an initial weight of 154.4±1.1g were randomly allocated across 48 tanks (three replicates per treatment). After eight weeks, the average weight gain across all treatments was 187.7±2.3g/fish and feed conversion across all treatments averaged 1.04±0.01 feed/gain. A significant effect of FM on both feed intake and weight gain was observed, and this was observed as early as within the first few weeks, but no similar such effect was observed with FO. No effects were observed on protein deposition efficiency, though both lipid and energy deposition efficiencies were affected by FM level. The reduction in FO had a notable effect on the fatty acid composition of the diets and subsequently the fish fatty acid composition. Expression of key LC-PUFA metabolism genes in the liver of the fish was influenced by both FM and FO levels, but was only significant at the extremes of the treatment ranges. The results from this study demonstrate that there is clear potential to replace almost all the FM content of barramundi diets without loss of fish performance, up to and including diets with as little as 100g/kg fishmeal. Replacement of fish oil was more successful with the ability to completely replace all FO demonstrated at all but the lowest inclusion levels of FM. These results clearly demonstrate that the near complete replacement of both FM and FO in barramundi diets is a technical reality
Catalysts for long-life closed-cycle CO2 lasers
Long-life, closed-cycle operation of pulsed CO2 lasers requires catalytic CO-O2 recombination both to remove O2, which is formed by discharge-induced CO2 decomposition, and to regenerate CO2. Platinum metal on a tin (IV) oxide substrate (Pt/SnO2) has been found to be an effective catalyst for such recombination in the desired temperature range of 25 to 100 C. This paper presents a description of ongoing research at NASA-LaRC on Pt/SnO2 catalyzed CO-O2 recombination. Included are studies with rare-isotope gases since rare-isotope CO2 is desirable as a laser gas for enhanced atmospheric transmission. Results presented include: (1) achievement of 98% to 100% conversion of a stoichiometric mixture of CO and O2 to CO2 for 318 hours (greater than 1 x 10 to the 6th power seconds), continuous, at a catalyst temperature of 60 C, and (2) development of a technique verified in a 30-hour test, to prevent isotopic scrambling when CO-18 and O-18(2) are reacted in the presence of a common-isotope Pt/Sn O-16(2) catalyst
Reactive astrocytes potentiate tumor aggressiveness in a murine glioma resection and recurrence model
Surgical resection is a universal component of glioma therapy. Little is known about the postoperative microenvironment due to limited preclinical models. Thus, we sought to develop a glioma resection and recurrence model in syngeneic immune-competent mice to understand how surgical resection influences tumor biology and the local microenvironment
- …