6,544 research outputs found

    Structural Assembly Demonstration Experiment (SADE)

    Get PDF
    The purpose of the Structural Assembly Demonstration Experiment (SADE) was to create a near-term Shuttle flight experiment focusing on the deployment and erection of structural truss elements. The activities of the MIT Space Systems Laboratory consist of three major areas: preparing and conducting neutral buoyancy simulation test series; producing a formal SADE Experiment plan; and studying the structural dynamics issues of the truss structure. Each of these areas is summarized

    Managing Multiple Vital Rates To Maximize Greater Sage Grouse Population Growth

    Get PDF
    Despite decades of greater sage grouse (Centrocercus urophasianus) field research, the resulting range-wide demographic data has yet to be synthesized into sensitivity analyses to guide management actions. We summarized range-wide demographic rates from 71 studies from 1938-2008 to better understand greater sage-grouse population dynamics. We used data from 38 of these studies with suitable data to parameterize a two-stage, female-based population matrix model. We conducted analytical sensitivity, elasticity, and variancestabilized sensitivity analyses to identify the contribution of each vital rate to population growth rate (?) and life-stage simulation analysis (LSA) to determine the proportion of variation in ? accounted for by each vital rate. Greater sage grouse showed marked annual and geographic variation in multiple vital rates. Sensitivity analyses suggest that, in contrast to most other North American galliforms, female survival is as important for population growth as chick survival and more important than nest success. In lieu of quantitative data on factors driving local populations, we recommend that management efforts for sage grouse focus on increasing juvenile, yearling, and adult female survival by restoring intact sagebrush landscapes, reducing persistent sources of mortality, and eliminating anthropogenic habitat features that subsidize predators. Our analysis also supports efforts to increase chick survival and nest success by managing shrub, forb, and grass cover and height to meet published brood-rearing and nesting habitat guidelines, but not at the expense of reducing shrub cover and height below that required for survival in fall and winter

    Time Synchronization and Distribution Mechanisms for Space Networks

    Get PDF
    This work discusses research on the problems of synchronizing and distributing time information between spacecraft based on the Network Time Protocol (NTP), where NTP is a standard time synchronization protocol widely used in the terrestrial network. The Proximity-1 Space Link Interleaved Time Synchronization (PITS) Protocol was designed and developed for synchronizing spacecraft that are in proximity where proximity is less than 100,000 km distant. A particular application is synchronization between a Mars orbiter and rover. Lunar scenarios as well as outer-planet deep space mother-ship-probe missions may also apply. Spacecraft with more accurate time information functions as a time-server, and the other spacecraft functions as a time-client. PITS can be easily integrated and adaptable to the CCSDS Proximity-1 Space Link Protocol with minor modifications. In particular, PITS can take advantage of the timestamping strategy that underlying link layer functionality provides for accurate time offset calculation. The PITS algorithm achieves time synchronization with eight consecutive space network time packet exchanges between two spacecraft. PITS can detect and avoid possible errors from receiving duplicate and out-of-order packets by comparing with the current state variables and timestamps. Further, PITS is able to detect error events and autonomously recover from unexpected events that can possibly occur during the time synchronization and distribution process. This capability achieves an additional level of protocol protection on top of CRC or Error Correction Codes. PITS is a lightweight and efficient protocol, eliminating the needs for explicit frame sequence number and long buffer storage. The PITS protocol is capable of providing time synchronization and distribution services for a more general domain where multiple entities need to achieve time synchronization using a single point-to-point link

    Thermally activated magnetization reversal in monoatomic magnetic chains on surfaces studied by classical atomistic spin-dynamics simulations

    Full text link
    We analyze the spontaneous magnetization reversal of supported monoatomic chains of finite length due to thermal fluctuations via atomistic spin-dynamics simulations. Our approach is based on the integration of the Landau-Lifshitz equation of motion of a classical spin Hamiltonian at the presence of stochastic forces. The associated magnetization lifetime is found to obey an Arrhenius law with an activation barrier equal to the domain wall energy in the chain. For chains longer than one domain-wall width, the reversal is initiated by nucleation of a reversed magnetization domain primarily at the chain edge followed by a subsequent propagation of the domain wall to the other edge in a random-walk fashion. This results in a linear dependence of the lifetime on the chain length, if the magnetization correlation length is not exceeded. We studied chains of uniaxial and tri-axial anisotropy and found that a tri-axial anisotropy leads to a reduction of the magnetization lifetime due to a higher reversal attempt rate, even though the activation barrier is not changed.Comment: 2nd version contains some improvements and new Appendi
    corecore