41 research outputs found

    Every Text is a Performance: A Pre-History of Performance Philosophy

    Get PDF
    This article traces a genealogy of performance philosophy along two separate lines within the history of the twentieth-century academy.  On the one hand, it locates within the long history of philosophically-informed studies of dramatic literature a partial model for the work of performance philosophy, one that applied philosophical scrutiny to dramatic texts without ever extending the same consideration to theatrical performance—in spite of the practical theatrical work of many of this movement’s leading academic proponents.  On the other hand, it identifies in the poststructualist rethinking of textual authority an opening for the reconsideration of philosophical communication that returns performance to a place of philosophical potential that it has not securely held since before Plato’s dialogues.  It is argued that the intersection of these two trend lines in academic thought should be regarded as constituting an important intellectual genesis point for the emergence of performance philosophy and a useful means of approaching the purposes and boundary points of the field

    Co-administration With the Pharmacological Chaperone AT1001 Increases Recombinant Human α-Galactosidase A Tissue Uptake and Improves Substrate Reduction in Fabry Mice

    Get PDF
    Fabry disease is an X-linked lysosomal storage disorder (LSD) caused by mutations in the gene (GLA) that encodes the lysosomal hydrolase α-galactosidase A (α-Gal A), and is characterized by pathological accumulation of the substrate, globotriaosylceramide (GL-3). Regular infusion of recombinant human α-Gal A (rhα-Gal A), termed enzyme replacement therapy (ERT), is the primary treatment for Fabry disease. However, rhα-Gal A has low physical stability, a short circulating half-life, and variable uptake into different disease-relevant tissues. We hypothesized that coadministration of the orally available, small molecule pharmacological chaperone AT1001 (GR181413A, 1-deoxygalactonojirimycin, migalastat hydrochloride) may improve the pharmacological properties of rhα-Gal A via binding and stabilization. AT1001 prevented rhα-Gal A denaturation and activity loss in vitro at neutral pH and 37 °C. Coincubation of Fabry fibroblasts with rhα-Gal A and AT1001 resulted in up to fourfold higher cellular α-Gal A and ~30% greater GL-3 reduction compared to rhα-Gal A alone. Furthermore, coadministration of AT1001 to rats increased the circulating half-life of rhα-Gal A by >2.5-fold, and in GLA knockout mice resulted in up to fivefold higher α-Gal A levels and fourfold greater GL-3 reduction than rhα-Gal A alone. Collectively, these data highlight the potentially beneficial effects of AT1001 on rhα-Gal A, thus warranting clinical investigation

    Fluorescence-Quenched Substrates for Live Cell Imaging of Human Glucocerebrosidase Activity

    Get PDF
    Deficiency of the lysosomal glycoside hydrolase glucocerebrosidase (GCase) leads to abnormal accumulation of glucosyl ceramide in lysosomes and the development of the lysosomal storage disease known as Gaucher’s disease. More recently, mutations in the GBA1 gene that encodes GCase have been uncovered as a major genetic risk factor for Parkinson’s disease (PD). Current therapeutic strategies to increase GCase activity in lysosomes involve enzyme replacement therapy (ERT) and molecular chaperone therapy. One challenge associated with developing and optimizing these therapies is the difficulty in determining levels of GCase activity present within the lysosomes of live cells. Indeed, visualizing the activity of endogenous levels of any glycoside hydrolases, including GCase, has proven problematic within live mammalian cells. Here we describe the successful modular design and synthesis of fluorescence-quenched substrates for GCase. The selection of a suitable fluorophore and quencher pair permits the generation of substrates that allow convenient time-dependent monitoring of endogenous GCase activity within cells as well as localization of activity within lysosomes. These efficiently quenched (∼99.9%) fluorescent substrates also permit assessment of GCase inhibition in live cells by either confocal microscopy or high content imaging. Such substrates should enable improved understanding of GCase in situ as well the optimization of small-molecule chaperones for this enzyme. These findings also suggest routes to generate fluorescence-quenched substrates for other mammalian glycoside hydrolases for use in live cell imaging

    Contracts

    No full text
    No abstract availabl

    Weight

    No full text
    No abstract availabl

    The Blind (play)

    No full text
    No abstract availabl

    Weights

    No full text
    No abstract availabl

    Hamlet

    No full text
    No abstract availabl

    Philosophy and Theatre: An Introduction

    No full text
    corecore