47 research outputs found
A Career Of Serotonin Research: From LSD To SIDS
Dr. David Mokler discusses his research, focused on behavior and neurochemistry of the brain, particularly serotonin. His research has examined the effects of drugs of abuse on the brain, sudden infant death syndrome, prenatal protein malnutrition and the limbic system of the brain.https://dune.une.edu/biomed_facpres/1005/thumbnail.jp
Diazepam, Pentobarbital, And Methaqualone Effects On Several Behaviors In The Rat And Antagonism By Ro 15-1788
The sedative hypnotics may exert their effects through a number of different mechanisms. Diazepam interacts with a specific receptor linked to a GABA receptor and a CL ionophore (Skolnick and Paul, 1981) and enhances the binding affinity of the GABA receptor for its ligand. Barbiturates may act at an additional receptor linked to this complex (Olsen, 1981). The sites of action of methaqualone have yet to be defined. Recently Hunkeler et al. (1981) synthesized a new class of compounds, the imidazodiazepines, the prototype being Ro 15-1788. They showed that Ro 15-1788 inhibits 3H-Diazepam binding to brain synaptosomes, reverses diazepam-induced protection against metrazol seizures, and alleviates the disruption induced by diazepam in a horizontal wire test. Ro 15-1788 does not affect the depression induced by Phenobarbital, meprobamate or ethanol. In a standard conflict paradigm Ro 15-1788 prevents the antipunishment effect of diazepam. Ro 15-1788 also antagonizes the decrease in rat cerebellar cGMP by diazepam, but not that by barbiturates, ethanol or meprobamate (Mohler et al., 1981), and reverses the effects of 3-methylclonazepam in a number of tests in humans (Darragh et al., 1981). We have investigated the effects of diazepam (DZ), pentobarbital (PB) and methaqualone (MQ) alone and in combination with Ro 15-1788 in a novel conflict paradigm, conditioned suppression of drinking (CSD), as well as in rotarod performance (RR) and motor activity (MA)
The Herbal Cabinet
Description of a historical Eli Lilly herb identification collection belonging to University of New England professor David Mokler, including herb scientific names, common names, ranges, and uses. Each herb bottle is pictured, its label information is reproduced, and each herb’s historical and current uses are briefly described.https://dune.une.edu/biomed_facproj/1000/thumbnail.jp
Effects of Combined Opioids on Pain and Mood in Mammals
The authors review the opioid literature for evidence of increased analgesia and reduced adverse side effects by combining mu-opioid-receptor (MOR) agonists, kappa-opioid-receptor (KOR) agonists, and nonselective low-dose-opioid antagonists (LD-Ant). We tested fentanyl (MOR agonist) and spiradoline (KOR agonist), singly and combined, against somatic and visceral pain models. Combined agonists induced additive analgesia in somatic pain and synergistic analgesia in visceral pain. Other investigators report similar effects and reduced tolerance and dependence with combined MOR agonist and KOR agonist. LD-Ant added to either a MOR agonist or KOR agonist markedly enhanced analgesia of either agonist. In accordance with other place-conditioning (PC) studies, our PC investigations showed fentanyl-induced place preference (CPP) and spiradoline-induced place aversion (CPA). We reduced fentanyl CPP with a low dose of spiradoline and reduced spiradoline CPA with a low dose of fentanyl. We propose combined MOR agonist, KOR agonist, and LD-Ant to produce superior analgesia with reduced adverse side effects, particularly for visceral pain
Fentanyl And Spiradoline Interactions In A Place-Conditioning Black-White Shuttle-Box
Rats were trained for multiple sessions in a place-conditioning shuttle-box to explore motivational interactions of mu and kappa opioid agonists, specifically fentanyl reward and spiradoline aversion. In Phase 1, groups of rats received various doses of mu or kappa agonists, or placebo, testing for preference or aversion. Group A always received saline SC before 15-minute sessions. Group B received fentanyl SC (0.003, 0.006, 0.012 mg/kg), Group C received low and medium doses of agonists SC, and Group D received spiradoline (0.3, 0.6, 1.2 mg/kg) SC during Training Sessions 1-4, rats being restricted to the drug-associated compartment. Rats received saline when restricted to the placebo-associate compartment and on test days with access to both shuttle-box compartments. In Phase 2 of the study, Training Session 5, Combinations of mu and kappa agonists were substituted in Groups B, C, and D. Dose-related preference to fentanyl and aversion to spiradoline occurred during Test Sessions 1-4. During Test Session 5, fentanyl preference in Group B was suppressed by spiradoline, rats in Group C had a saline-like response to combined agonists, and spiradoline aversion in Group D was attenuated by fentanyl. These findings suggest that combined doses of mu and kappa agonists, while additive for antinociception, offset the rewarding and punishing effects of each other
Stress-Induced Changes In Extracellular Dopamine And Serotonin In The Medial Prefrontal Cortex And Dorsal Hippocampus Of Prenatally Malnourished Rats
Prenatal protein malnutrition continues to be a significant problem in the world today. Exposure to prenatal protein malnutrition increases the risk of a number of neuropsychiatric disorders in adulthood including depression, schizophrenia and attentional deficit disorder. In the present experiment we have examined the effects of stress on extracellular serotonin (5-HT) and dopamine in the medial prefrontal cortex and dorsal hippocampus of rats exposed in utero to protein malnutrition. The medial prefrontal cortex and dorsal hippocampus were chosen as two limbic forebrain regions involved in learning and memory, attention and the stress response. Extracellular 5-HT and dopamine were determined in the medial prefrontal cortex and dorsal hippocampus of adult male Sprague-Dawley rats using dual probe in vivo microdialysis. Basal extracellular 5-HT did not differ between malnourished and well-nourished controls in either the medial prefrontal cortex or the dorsal hippocampus. Basal extracellular dopamine was significantly decreased in the medial prefrontal cortex of malnourished animals. Restraint stress (20 m) produced a significant rise in extracellular dopamine in the medial prefrontal cortex of well-nourished rats but did not alter release in malnourished rats. In malnourished rats, stress produced an increase in 5-HT in the hippocampus, whereas stress produced a decrease in 5-HT in the hippocampus of well-nourished rats. These data demonstrate that prenatal protein malnutrition alters dopaminergic neurotransmission in the medial prefrontal cortex as well as altering the dopaminergic and serotonergic response to stress. These changes may provide part of the bases for alterations in malnourished animals’ response to stress
Behavioral Interactions Of Opioid Agonists And Antagonists With Serotonergic Systems
Morphine interacts with brain serotonergic (5-HT) systems; these systems have been implicated in morphine analgesia and dependence (see Cervo et al., 1981). The 5-HT agonist quipazine induces analgesia in rats that is attenuated by naloxone and 5-HT antagonists (Minnema et al., 1980; Samanin et al., 1976). Behavioral disruption by the hallucinogens LSD, DMT and mescaline, mediated primarily through brain 5-HT effects (Rech and Commissaris, 1982), is potentiated by naloxone and naltrexone (Commissaris et al., 1980; Ruffing and Domino, 1981) and is variably antagonized or potentiated by morphine and methadone (Ruffing and Domino, 1981). Cyclazocine causes a disruption of operant behavior similar to that of the hallucinogens which is reversed in part by nalozone and the 5-HT antagonist metergoline, and to a greater extent by the combination of maloxone and metergoline (Henck et al., 1983). These studies indicate that indole and phenethylamine hallucinogens interact to some extent with brain opioid mechanisms as well as brain 5-HT components, whereas opioid drugs influence behavior in part by actions on 5-HT systems. We have extended these drug studies in an attempt to characterize interactions with 5-HT mechanisms and to identify the various types of opioid receptors involved
Stress-induced changes in extracellular dopamine and serotonin in the medial prefrontal cortex and dorsal hippocampus of prenatally malnourished rats. Brain Res
Prenatal protein malnutrition continues to be a significant problem in the world today. Exposure to prenatal protein malnutrition increases the risk of a number of neuropsychiatric disorders in adulthood including depression, schizophrenia and attentional deficit disorder. In the present experiment, we have examined the effects of stress on extracellular serotonin (5-HT) and dopamine in the medial prefrontal cortex and dorsal hippocampus of rats exposed in utero to protein malnutrition. The medial prefrontal cortex and dorsal hippocampus were chosen as two limbic forebrain regions involved in learning and memory, attention and the stress response. Extracellular 5-HT and dopamine were determined in the medial prefrontal cortex and dorsal hippocampus of adult male Sprague-Dawley rats using dual probe in vivo microdialysis. Basal extracellular 5-HT did not differ between malnourished and well-nourished controls in either the medial prefrontal cortex or the dorsal hippocampus. Basal extracellular dopamine was significantly decreased in the medial prefrontal cortex of malnourished animals. Restraint stress (20 m) produced a significant rise in extracellular dopamine in the medial prefrontal cortex of well-nourished rats but did not alter release in malnourished rats. In malnourished rats, stress produced an increase in 5-HT in the hippocampus, whereas stress produced a decrease in 5-HT in the hippocampus of well-nourished rats. These data demonstrate that prenatal protein malnutrition alters dopaminergic neurotransmission in the medial prefrontal cortex as well as alters the dopaminergic and serotonergic response to stress. These changes may provide part of the bases for alterations in malnourished animals' response to stress. Introduction Prenatal protein malnutrition affects a significant portion of the world's population. Our group has attempted to understand the consequences of malnutrition on the development of the brain in a rat model of prenatal protein malnutrition which exposes rats in utero to a low (6%) casein die
Prenatal Protein Malnutrition Leads to Hemispheric Differences in the Extracellular Concentrations of Norepinephrine, Dopamine and Serotonin in the Medial Prefrontal Cortex of Adult Rats
Exposure to prenatal protein malnutrition (PPM) leads to a reprogramming of the brain, altering executive functions involving the prefrontal cortex (PFC). In this study we used in vivo microdialysis to assess the effects of PPM on extracellular concentrations of norepinephrine (NE), dopamine (DA) and serotonin (5-HT) bilaterally in the ventral portion of the medial prefrontal cortex (vmPFC; ventral prelimbic and infralimbic cortices) of adult Long-Evans rats. Female Long-Evans rats were fed either a low protein (6%) or adequate protein diet (25%) prior to mating and throughout pregnancy. At birth, all litters were culled and fostered to dams fed a 25% (adequate) protein diet. At 120 days of age, 2 mm microdialysis probes were placed into left and right vmPFC. Basal extracellular concentrations of NE, DA, and 5-HT were determined over a 1-h period using HPLC. In rats exposed to PPM there was a decrease in extracellular concentrations of NE and DA in the right vmPFC and an increase in the extracellular concentration of 5-HT in the left vmPFC compared to controls (prenatally malnourished: N = 10, well-nourished: N = 20). Assessment of the cerebral laterality of extracellular neurotransmitters in the vmPFC showed that prenatally malnourished animals had a significant shift in laterality from the right to the left hemisphere for NE and DA but not for serotonin. In a related study, these animals showed cognitive inflexibility in an attentional task. In animals in the current study, NE levels in the right vmPFC of well-nourished animals correlated positively with performance in an attention task, while 5-HT in the left vmPFC of well-nourished rats correlated negatively with performance. These data, in addition to previously published studies, suggest a long-term reprogramming of the vmPFC in rats exposed to PPM which may contribute to attention deficits observed in adult animals exposed to PPM
Prenatal Protein Malnutrition Produces Resistance to Distraction Similar to Noradrenergic Deafferentation of the Prelimbic Cortex in a Sustained Attention Task
Exposure to malnutrition early in development increases likelihood of neuropsychiatric disorders, affective processing disorders, and attentional problems later in life. Many of these impairments are hypothesized to arise from impaired development of the prefrontal cortex. The current experiments examine the impact of prenatal malnutrition on the noradrenergic and cholinergic axons in the prefrontal cortex to determine if these changes contribute to the attentional deficits seen in prenatal protein malnourished rats (6% casein vs. 25% casein). Because prenatally malnourished animals had significant decreases in noradrenergic fibers in the prelimbic cortex with spared innervation in the anterior cingulate cortex and showed no changes in acetylcholine innervation of the prefrontal cortex, we compared deficits produced by malnutrition to those produced in adult rats by noradrenergic lesions of the prelimbic cortex. All animals were able to perform the baseline sustained attention task accurately. However, with the addition of visual distractors to the sustained attention task, animals that were prenatally malnourished and those that were noradrenergically lesioned showed cognitive rigidity, i.e., were less distractible than control animals. All groups showed similar changes in behavior when exposed to withholding reinforcement, suggesting specific attentional impairments rather than global difficulties in understanding response rules, bottom-up perceptual problems, or cognitive impairments secondary to dysfunction in sensitivity to reinforcement contingencies. These data suggest that prenatal protein malnutrition leads to deficits in noradrenergic innervation of the prelimbic cortex associated with cognitive rigidity