643 research outputs found

    Protein Kinase C-Regulated AĪ² Production and Clearance

    Get PDF
    Alzheimer's disease (AD) is the most common form of dementia among the elderly population. AD, which is characterized as a disease of cognitive deficits, is mainly associated with an increase of amyloid Ī²-peptide (AĪ²) in the brain. A growing body of recent studies suggests that protein kinase C (PKC) promotes the production of the secretory form of amyloid precursor protein (sAPPĪ±) via the activation of Ī±-secretase activity, which reduces the accumulation of pathogenic AĪ² levels in the brain. Moreover, activation of PKCĪ± and mitogen-activated protein kinase (MAPK) is known to increase sAPPĪ±. A novel type of PKC, PKCĪµ, activates the AĪ² degrading activity of endothelin converting enzyme type 1 (ECE-1), which might be mediated via the MAPK pathway as well. Furthermore, dysregulation of PKC-MAPK signaling is known to increase AĪ² levels in the brain, which results in AD phenotypes. Here, we discuss roles of PKC in AĪ² production and clearance and its implication in AD

    CHD associated with syndromic diagnoses: peri-operative risk factors and early outcomes

    Get PDF
    CHD is frequently associated with a genetic syndrome. These syndromes often present specific cardiovascular and non-cardiovascular co-morbidities that confer significant peri-operative risks affecting multiple organ systems. Although surgical outcomes have improved over time, these co-morbidities continue to contribute substantially to poor peri-operative mortality and morbidity outcomes. Peri-operative morbidity may have long-standing ramifications on neurodevelopment and overall health. Recognising the cardiovascular and non-cardiovascular risks associated with specific syndromic diagnoses will facilitate expectant management, early detection of clinical problems, and improved outcomes--for example, the development of syndrome-based protocols for peri-operative evaluation and prophylactic actions may improve outcomes for the more frequently encountered syndromes such as 22q11 deletion syndrome

    Enzyme and Tissue Alterations in Fishes: A Measure of Water Quality

    Get PDF
    A variety of freshwater fishes were studied by light and electron microscopy, enzyme histochemical and biochemical methods, The objective was to determine normal structure and function in specific target organs and to compare these to altered states in aquatic pollution. The basic question, can fish tissues and enzymes serve as indicators of water quality?, was asked. Microscopic alteration in gill was indicative of copper toxicity at an exposure of 20 parts per billion, Gross and light microscopic alterations were indicative of a single exposure of channel catfish to 15 parts per million of methyl mercuric chloride (CH3HgCl). Microscopic and correlated biochemical study fingerprinted the alterations in cells at an exposure of 0.67 parts per million CH3HgC1. The developments of pathobiological autopsy techniques for the assessment of water quality is discussed

    A Generalist Framework for Panoptic Segmentation of Images and Videos

    Full text link
    Panoptic segmentation assigns semantic and instance ID labels to every pixel of an image. As permutations of instance IDs are also valid solutions, the task requires learning of high-dimensional one-to-many mapping. As a result, state-of-the-art approaches use customized architectures and task-specific loss functions. We formulate panoptic segmentation as a discrete data generation problem, without relying on inductive bias of the task. A diffusion model is proposed to model panoptic masks, with a simple architecture and generic loss function. By simply adding past predictions as a conditioning signal, our method is capable of modeling video (in a streaming setting) and thereby learns to track object instances automatically. With extensive experiments, we demonstrate that our simple approach can perform competitively to state-of-the-art specialist methods in similar settings.Comment: ICCV'23. Code at https://github.com/google-research/pix2se

    The Immune Response to Herpes Simplex Virus Type 1 Infection in Susceptible Mice is a Major Cause of CNS Pathology Resulting in Fatal Encephalitis

    Get PDF
    This study was undertaken to investigate possible immune mechanisms in fatal HSV-1 encephalitis (HSE) after HSV-1 corneal inoculation. Susceptible 129S6 (129) but not resistant C57BL/6 (B6) mice developed intense focal inflammatory brainstem lesions of primarily F4/80+ macrophages and Gr-1+ neutrophils detectable by MRI as early as day 6 post infection (PI). Depletion of macrophages and neutrophils significantly enhanced survival of infected 129 mice. Immunodeficient B6 (IL-7R-/-Kitw41/w41) mice lacking adaptive cells (B6-E mice) transplanted with 129 bone marrow showed significantly accelerated fatal HSE compared to B6-E mice transplanted with B6 marrow or control non-transplanted B6-E mice. In contrast, there was no difference in ocular viral shedding in B6-E mice transplanted with 129 bone marrow or B6 bone marrow. Acyclovir treatment of 129 mice beginning day 4 PI (24 h after HSV-1 first reaches the brain stem) reduced nervous system viral titers to undetectable levels but did not alter brainstem inflammation or mortality. We conclude that fatal HSE in 129 mice results from widespread damage in the brainstem caused by destructive inflammatory responses initiated early in infection by massive infiltration of innate cells

    The period gene encodes a predominantly nuclear protein in adult Drosophila

    Get PDF
    The period gene of Drosophila melanogaster (per) is important for the generation and maintenance of biological rhythms. Previous light microscopic observations indicated that per is expressed in a variety of tissues and cell types and suggested that the per protein (PER) may be present in different subcellular compartments. To understand how PER influences circadian rhythms, it is important to define its subcellular location, especially in adult flies where inducible promoter experiments suggested that it is most relevant to circadian locomotor activity rhythms. To this end, we report the results of an immunoelectron microscopic analysis of wild-type flies and per-beta- galactosidase (beta-gal) fusion gene transgenics using a polyclonal anti-PER antibody or an anti-beta-gal antibody, respectively. Most of the PER antigen and the fusion gene product were located within nuclei, suggesting that PER acts in that subcellular compartment to affect circadian rhythms. The results are discussed in terms of per's possible biochemical functions

    Kinetics of Cytokine mRNA Expression in the Central Nervous System Following Lethal and Nonlethal Coronavirus-Induced Acute Encephalomyelitis

    Get PDF
    AbstractThe potential role(s) of cytokines in the reduction of infectious virus and persistent viral infection in the central nervous system was examined by determining the kinetics of cytokine mRNA expression following infection with the neurotropic JHM strain of mouse hepatitis virus. Mice were infected with an antibody escape variant which produces a nonlethal encephalomyelitis and compared to a clonal virus population which produces a fulminant fatal encephalomyelitis. Infection with both viruses induced the accumulation of mRNAs associated with Th1- and Th2-type cytokines, including IFN-Ī³, IL-4, and IL-10. Peak mRNA accumulations were coincident with the clearance of virus and there was no obvious differences between lethally and nonlethally infected mice. TNF-Ī± mRNA was induced more rapidly in lethally infected mice compared to mice undergoing a nonfatal encephalomyelitis. Rapid transient increases in the mRNAs encoding IL-12, iNOS, IL-1Ī±, IL-1Ī², and IL-6 occurred following infection. Nonlethal infections were associated with increased IL-12, IL-1Ī², and earlier expression of IL-6, while lethal infections were associated with increased iNOS and IL-1Ī± mRNA. These data suggest a rapid but differential response within the central nervous system cells to infection by different JHMV variants. However, neither the accumulation nor kinetics of induction provide evidence to distinguish lethal infections from nonlethal infections leading to a persistent infection. Accumulation of both Th1 and Th2 cytokines in the central nervous system of JHMV-infected mice is consistent with the participation of both cytokines and cell immune effectors during resolution of acute viral-induced encephalomyelitis

    Fecal Enterobacteriales enrichment is associated with increased inĀ vivo intestinal permeability in humans

    Get PDF
    Type 2 diabetes (T2D) has been linked with increased intestinal permeability, but the clinical significance of this phenomenon remains unknown. The objective of this study was to investigate the potential link between glucose control, intestinal permeability, diet and intestinal microbiota in patients with T2D. Thirtyā€two males with wellā€controlled T2D and 30 ageā€matched male controls without diabetes were enrolled in a caseā€“control study. Metabolic parameters, inflammatory markers, endotoxemia, and intestinal microbiota in individuals subdivided into high (HP) and normal (LP) colonic permeability groups, were the main outcomes. In T2D, the HP group had significantly higher fasting glucose (P = 0.034) and plasma nonesterified fatty acid levels (P = 0.049) compared with the LP group. Increased colonic permeability was also linked with altered abundances of selected microbial taxa. The microbiota of both T2D and control HP groups was enriched with Enterobacteriales. In conclusion, high intestinal permeability was associated with poorer fasting glucose control in T2D patients and changes in some microbial taxa in both T2D patients and nondiabetic controls. Therefore, enrichment in the gramā€negative order Enterobacteriales may characterize impaired colonic permeability prior to/independently from a disruption in glucose tolerance
    • ā€¦
    corecore