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Abstract

CHD is frequently associated with a genetic syndrome. These syndromes often present specific 

cardiovascular and non-cardiovascular co-morbidities that confer significant peri-operative risks 

affecting multiple organ systems. Although surgical outcomes have improved over time, these co-

morbidities continue to contribute substantially to poor peri-operative mortality and morbidity 

outcomes. Peri-operative morbidity may have long-standing ramifications on neurodevelopment 

and overall health. Recognising the cardiovascular and non-cardiovascular risks associated with 

specific syndromic diagnoses will facilitate expectant management, early detection of clinical 

problems, and improved outcomes – for example, the development of syndrome-based protocols 

for peri-operative evaluation and prophylactic actions may improve outcomes for the more 

frequently encountered syndromes such as 22q11 deletion syndrome.
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CHD is present in 3–12 in 1000 births, but the incidence may be as high as 5% when strictly 

including all cardiovascular malformations such as bicuspid aortic valve.1–5 The genetic 

basis of CHD is well established4 – for instance, the Baltimore–Washington Infant Study in 

1989 reported chromosomal abnormalities in nearly 13% of infants with CHD.6 More recent 

studies have observed that 20–30% of infants with CHD have a recognised genetic 

syndrome or significant non-cardiovascular anomaly.5,7,8 Even among patients with isolated 

CHD, there is evidence for heritability and increased familial recurrence risk that may be 

particularly important for certain classes of CHD such as heterotaxy, left ventricular outflow 

tract obstructive lesions, and atrioventricular septal defects.9,10 In a minority of cases, gene 

mutations in NKX2–5, GATA4, and NOTCH1 have been observed in families demonstrating 

Mendelian inheritance.11–13 With the advancement of genetic technologies including DNA 

microarray and high-throughput sequencing platforms detection of genetic causes of CHD 
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continues to grow rapidly.14–16 It is critical that clinicians recognise the clinical relevance of 

a genetic diagnosis in order to improve outcomes, not only for syndromic patients but also 

for all CHD patients with informative genotypes. The peri-operative time period exposes 

patients to risk for significant complications that may have both immediate and long-term 

repercussions, including quality of life or neurocognitive outcomes.17,18 The aims of this 

review were to present the spectrum of peri-operative risks for patients with a genetic 

syndrome and CHD, comprehensively organise observations about the outcomes of patients 

with genetic syndromes, and synthesise our current understanding of the genetic basis of 

CHD as a tool for informing the peri-operative management of these patients.

Advances in cardiac surgery, catheterisation, and intensive care have significantly reduced 

mortality associated with CHD,19 shifting the focus towards minimising short- and long-

term morbidity. There are well-recognised peri-operative risks for all children undergoing 

cardiac surgery, including but not limited to myocardial dysfunction, arrhythmias, 

respiratory failure, infection, bleeding, thrombosis, kidney injury, and neurological injury.20 

However, the CHD sub-population with syndromic disease often has important non-

cardiovascular and functional – that is, non-structural – cardiovascular abnormalities that 

significantly modify these routine peri-operative risks or present additional risks that 

contribute to morbidity and mortality. It is certain that the cardiac surgeon, anaesthesiologist, 

intensivist, and cardiologist will frequently encounter children with a syndromic disorder. To 

our knowledge, the specific peri-operative risks that exist for patients with CHD and genetic 

syndromes have not previously been consolidated into a single source.

Many large studies have enrolled syndromic patients to broadly evaluate 

the impact of a syndromic diagnosis on surgical outcomes

Widely inclusive studies, which have analysed all types of paediatric cardiac surgical 

operations together, have observed that a syndromic diagnosis may not impact early 

operative mortality but does predispose to post-operative complications contributing to 

prolonged hospital length of stay.21–24 However, batching all types of CHD in this manner 

provides limited insight into risk factors, as both the genetic basis and the risk profiles of 

different cardiac lesions vary. Sub-classes of cardiac lesions that have been studied 

specifically include critical left ventricular outflow tract obstructive lesions and conotruncal 

defects. Detailed information about these studies, including study types, enrollment 

numbers, cardiac and genetic diagnoses, and early mortality and morbidity outcomes, is 

provided in Supplementary Table S1.

Patel et al25 extensively reviewed early post-operative outcomes data for hypoplastic left 

heart syndrome/critical left ventricular outflow tract obstruction from both the Society of 

Thoracic Surgeons – ~1200 Norwood operations from 2002 to 2006 – and the Congenital 

Heart Surgeons’ Society ~700 stage 1 palliations from 1994 to 2001 – databases. In the 

Society of Thoracic Surgeons database, 15% of patients were documented to have a “genetic 

and/or significant non-cardiovascular abnormality”, which was associated with increased in-

hospital mortality (26.7 versus 19.8%). Similarly, in the Congenital Heart Surgeons’ Society 

database, 8% had a “non-cardiac congenital abnormality or syndrome”, which was 

Landis et al. Page 2

Cardiol Young. Author manuscript; available in PMC 2016 November 28.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



associated with increased early risk of mortality. These mortality data are consistent with 

two other single-centre reports (together 310 patients)26,27 and with data from the Pediatric 

Heart Network’s Single Ventricle Reconstruction trial including 549 patients undergoing 

Norwood operations.28 This evidence is countered only by a single series of 158 patients 

who underwent Norwood operation.29 The Society of Thoracic Surgeons data demonstrate 

that in-hospital mortality was not increased after stage 2 (~700 operations) or stage 3 

palliations (~550 operations), recognising that stage 1 mortality may limit interpretation.25 

Increased morbidity was observed after all stages of palliation.25,30

Michielon et al31 provided important perspective in a cohort of nearly 800 patients with 

conotruncal defects – tetralogy of Fallot with or without pulmonary atresia, double-outlet 

right ventricle, truncus arteriosus, or interrupted aortic arch – undergoing biventricular repair 

from 1992 to 2007. Uniquely, nearly every patient in the cohort (96%) underwent clinical 

evaluation by a geneticist and prospective molecular screening (93%) for 22q11 deletion or 

aneuploidy. A genetic diagnosis was established in ~27% of these patients and was 

associated with increased hospital mortality (17 versus 7%) and prolonged duration of 

intensive care. These findings were consistent with previous observations in 266 patients 

with tetralogy of Fallot with normal pulmonary artery anatomy.32 Similarly, a cohort of 350 

patients with conotruncal defects undergoing primary or staged repair trended towards 

increased early mortality.33

Taken together, the presence of a genetic syndrome may negatively impact early post-

operative survival, particularly in the context of more complex cardiac operations such as the 

Norwood operation. It is particularly clear that post-operative morbidity risk is consistently 

elevated across the spectrum of cardiac lesions. These are very important observations, but 

are based on data from heterogeneous groups of genetic syndromes, which limit 

generalisability to specific syndromes. Moreover, batching patients with non-cardiovascular 

malformations lacking a defined genetic syndrome together with those who have a defined 

genetic syndrome creates challenges. In order to understand the risk factors and clinically 

intervene to improve outcomes, more precise data are required. To this end, the remainder of 

this article focuses on outcomes and risk factors for specific syndromic CHD populations.

The presence of a specific genetic syndrome impacts early peri-operative 

outcomes, and genetic syndromes often present with specific features 

posing significant peri-operative risks

Down syndrome

Down syndrome is present in at least one in 1000 live births and is caused by trisomy of 

chromosome 21 due to true aneuploidy, unbalanced translocation, or mosaicism.34,35 

Approximately 40–50% of patients with Down syndrome present with CHD, most 

frequently atrioventricular septal defect, followed by ventricular septal defect, atrial septal 

defect, patent ductus arteriosus, and tetralogy of Fallot.34,36

Survival after cardiac surgery is generally favourable, as summarised in Table 1, with more 

detailed information in Supplementary Table S2; three large contemporary database reviews 
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– encompassing a spectrum of cardiac operations and cumulatively including nearly 7000 

patients with Down syndrome – demonstrated that in-hospital mortality risk decreased 

(Healthcare Cost and Utilization Project Kids’ Inpatient Database)37,38 or was not different 

(Society of Thoracic Surgeons database)39 when compared with children without Down 

syndrome. Cardiac lesions studied specifically in Down syndrome are atrioventricular septal 

defects, conotruncal defects (primarily tetralogy of Fallot), and single ventricle lesions. Poor 

outcomes after repair of atrioventricular septal defects were reported in early surgical 

eras,40,41 but recent evidence indicates that children with Down syndrome undergoing 

biventricular repair for complete atrioventricular septal defect have better37,42 or similar 

early mortality rates43–46 compared with patients without Down syndrome. Re-operation 

rates may be lower in Down syndrome, likely related to less complex atrioventricular valve 

and outflow tract anatomy.42–44,46 Increased risk for post-operative complete heart block is 

reported after ventricular septal defect repair39,47 but not after atrioventricular septal defect 

repair.42,48

Similar to complete atrioventricular septal defect repair, Down syndrome does not 

significantly impact early mortality after surgery for tetralogy of Fallot32,37,39,41,49 or 

conotruncal defects collectively (predominantly tetralogy of Fallot).31,33 In contrast, Down 

syndrome may significantly worsen outcomes for single ventricle lesions. Review of the 

Kids’ Inpatient Database found that early mortality was increased both after systemic-to-

pulmonary shunt placement and after stage 2 palliation.37 Review of the Society of Thoracic 

Surgeons database also demonstrated increased hospital mortality for all stages of single 

ventricle palliation.39 Increased mortality (35%) after stage 3 palliation was observed in the 

Pediatric Cardiac Care Consortium database50 but was not corroborated by the Kids’ 

Inpatient Database or a smaller single-centre series.37,51 The reasons for poor outcomes after 

single ventricle palliations in these patients are undefined but likely related to predisposition 

for pulmonary hypertension, which may also contribute to prolonged hospitalisation after 

stage 2 and stage 3 palliations.39,51

Many features of Down syndrome impact peri-operative morbidity. Pulmonary and 

pulmonary vascular co-morbidities feature prominently (Table 2 and Supplementary Table 

S3). Congenital respiratory tract anomalies may be present at multiple levels and include 

macroglossia/glossoptosis, adenotonsillar hypertrophy, sub-glottic stenosis, laryngomalacia, 

tracheal stenosis, complete tracheal rings, and tracheobronchomalacia. Hypotonia can 

exacerbate anatomical narrowing. Patients are at risk for pulmonary hypertension due to 

chronic hypoventilation related to airway obstruction and sleep apnoea as well as intrinsic 

risk for pulmonary vascular disease.52–54 Craniofacial and upper airway anomalies can 

complicate peri-operative airway management and/or performance of trans-oesophageal 

echocardiography.55–57 Pulmonary abnormalities include pulmonary hypoplasia, interstitial 

lung disease secondary to chronic aspiration or infection, tracheal bronchus predisposing to 

recurrent right upper lobe collapse or pneumonia, sub-pleural cysts predisposing to 

pneumothorax, and lymphatic abnormalities including pulmonary lymphangiectasia.58–63 

These airway co-morbidities manifest clinically as increased risk for post-operative 

respiratory complications,39,48,64 prolonged mechanical ventilation,51,64,65 pneumothorax,48 

chylothorax,22,39 chylopericardium,66 and failed extubation.67 These observations mandate 

vigilant assessment and treatment of the pulmonary status in the post-operative period, 
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which may be optimised by pre-operative consultation and testing, particularly in high-risk 

patients – for example, single ventricle lesions.

Dysfunction of B- and T-lymphocytes and neutrophils may predispose to infections and 

exacerbate the inflammatory response to cardiopulmonary bypass.22,39,48,51,68–71 Congenital 

hypothyroidism occurs in ~1%, and thyroid screening at regular intervals, including at ages 

6 and 12 months, is indicated because an additional 4–18% develop hypothyroidism.34,72,73 

Pre-operative thyroid screening is indicated so that hypothyroidism can be treated pre-

operatively. As thyroid levels decrease with cardiopulmonary bypass surgery and impact 

myocardial function and cardiovascular stability,74,75 intra-operative and post-operative 

parenteral therapy may be indicated. The risk for atlantoaxial instability calls for appropriate 

peri-operative precautionary measures to avoid neurological injury, especially in mid-to-late 

childhood.34,76 Increased risk for seizures – ~ 8% in the general Down syndrome population 

– should also be considered.77 Taken together, Down syndrome presents significant co-

morbidities that can impact peri-operative outcomes. Fortunately, mortality outcomes have 

improved over time for the most-frequent lesions, but non-cardiovascular abnormalities 

continue to contribute to post-operative morbidity outcomes and require clinical vigilance 

and future research.

22q11 deletion syndrome

Microdeletion of 22q11.2 causes several disorders with overlapping clinical phenotypes 

including DiGeorge syndrome, velocardiofacial syndrome, and conotruncal anomaly face 

syndrome, and is present in approximately one in 5000 live births.78,79 Suggestive features 

include long narrow face and small protuberant ears with thick and crumpled helices.80 

CHD is present in at least 75%.81 The typical cardiac lesions are conotruncal defects and 

abnormalities of the aortic arch and brachiocephalic arteries, including type B interrupted 

aortic arch, truncus arteriosus, tetralogy of Fallot, pulmonary atresia with ventricular septal 

defect, isolated ventricular septal defect, and abnormal aortic arch sidedness and/or 

branching.82–84

Peri-operative outcomes are summarised in Table 1 with more detailed information in 

Supplementary Table S4. Early reports observed very high operative mortality in neonates 

with DiGeorge syndrome.85 Although increased hospital mortality was also observed in a 

more contemporary series of patients with conotruncal defects,33 there is strong evidence 

that 22q11 deletion no longer results in early mortality for the vast majority of cardiac 

lesions;31,32,86–88 however, substantial post-operative morbidity persists including slow 

recovery and increased frequency of cardiac events such as the need for re-

operation.31,32,86,87 Notably, patients with pulmonary atresia with ventricular septal defect 

and major aortopulmonary collateral arteries have consistently demonstrated increased early 

mortality in the setting of 22q11 deletion.89–93 In addition, early operative mortality after 

Norwood stage 1 operation was observed in two of five patients in the Congenital Heart 

Surgeons’ Society database from 1994 to 2001, supporting the concept that genetic 

syndromes continue to impact high-risk operations.25

Congenital malformations including cleft palate, sub-mucous clefts, retrognathia, Pierre 

Robin sequence, congenital laryngeal web, and vascular ring may complicate airway 
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management.81,94,95 Bronchomalacia and bronchospasm have been observed in patients with 

22q11 deletion and pulmonary atresia with ventricular septal defect, which may be related to 

compression by aortopulmonary collateral vessels.96,97 Although prolonged mechanical 

ventilation was not observed after unifocalisation of the major aortopulmonary collateral 

arteries,98 increased post-operative respiratory complications including prolonged intubation 

and post-extubation stridor have been observed.99

Thymic aplasia occurs rarely (<1% of cases) and is associated with severe immune 

deficiency. More commonly, thymic hypoplasia causes mild-to-moderate immune 

deficiency. Complete preoperative immunological evaluation and blood product precautions 

– cytomegalovirus-negative and irradiated blood products – are indicated for all cases to 

prevent iatrogenic infection and graft versus host disease.80,85,100 Low T-lymphocyte counts 

are present in 75–80% of patients with 22q11 deletion.101 B-lymphocyte dysfunction with 

immunoglobulin deficiency also may have clinical significance.102,103 Frequent infectious 

complications including fungal infections have been reported23,85,88,91,99 but not 

uniformly.86,87,90 It has been suggested that prophylaxis with broad-spectrum antibiotics 

including antifungal agents may be indicated.104 Developmental hypoplasia of the 

parathyroid glands results in hypocalcaemia in 40–80% of patients and is often accompanied 

by hypomagnesaemia.105 Close peri-operative electrolyte monitoring is necessary to 

preserve cardiac function, avoid dysrhythmia, and prevent secondary seizures. Peri-operative 

seizures are linked to worse neurodevelopmental outcomes in 22q11 deletion.106 Annual 

assessment of thyroid function is recommended because hypothyroidism is present in 20–

30% of patients; a routine preoperative thyroid screening approach similar to Down 

syndrome may be reasonable.80,105,107

Interestingly, the gene encoding glycoprotein Ib (GP1BB), which is responsible for 

autosomal-recessive Bernard–Soulier disease, is located within the 22q11 region. Patients 

with 22q11 deletion, and thus hemizygous deletion of GP1BB, may have abnormally large 

platelets and thrombocytopaenia (macrothrombocytopaenia).108,109 Platelet dysfunction has 

been described previously.110,111 Post-operative bleeding accounted for a significant 

proportion of post-operative deaths in patients with pulmonary atresia with ventricular septal 

defect.90,93 A complete haematological workup may be indicated before operations 

requiring small vessel anastomoses – for example, unifocalisation – and unexplained severe 

post-operative bleeding should trigger concern for Bernard–Soulier disease due to mutation 

of the nondeleted GP1BB allele.112 Renal and urinary tract abnormalities are present in 30–

40% of patients, including renal agenesis, multi-cystic dysplastic kidneys, hydronephrosis, 

and vesicoureteral reflux.81,113 Increased need for post-operative dialysis has been 

observed.88 Autonomic dysfunction may in some cases explain post-operative hypotension 

refractory to usual therapy.114 Taken together, the developmental abnormalities associated 

with 22q11 deletion likely contribute to mortality after complex operations and morbidity 

across the spectrum of CHD surgery. Improvements in anticipatory management of common 

abnormalities – for example, immune dysfunction and hypocalcaemia – will continue to 

improve outcomes. Abnormalities that are less frequently recognised – for example,. 

haematological dysfunction – should be anticipated and acted upon when deviation from 

expected recovery is encountered.
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Heterotaxy syndrome

Heterotaxy syndrome, a disorder of laterality characterised by abnormal thoracoabdominal 

situs, is frequently associated with CHD and is present in at least one in 10,000 live 

births.115 Mutations in genes such as DNAH5, ZIC3, CFC1, NODAL, ACVR2B, DNAI1, 

and LEFTY2, many of which are components of the Nodal signal transduction pathway, 

have been identified;116 familial recurrence is more frequently observed compared with 

other cardiac lesions.9 CHD is often complex, including complete atrioventricular canal 

defect, anomalous pulmonary and systemic venous return, and pulmonary outflow tract 

obstruction. Heterotaxy can be sub-classified as right atrial isomerism versus left atrial 

isomerism as determined by atrial appendage and bronchopulmonary anatomy.117 In general 

terms, right atrial isomerism typically has more severe CHD, often requires single ventricle 

palliation, and has worse survival in childhood.118–120 In right atrial isomerism, abnormal 

morphology and function of the sinoatrial node and the atrioventricular conduction system 

predispose to both tachyarrhythmia and bradyarrhythmia121–124 – for instance, supra-

ventricular tachycardia has been observed in up to 25% of cases, including re-entrant 

mechanisms mediated by twin atrioventricular nodes.125–127 Atrioventricular block and 

sinus node dysfunction are more frequently observed in left atrial isomerism.125,127 In 

addition to arrhythmia concerns, non-compaction cardiomyopathy is described and may 

contribute to unexpected ventricular dysfunction.128

Peri-operative outcomes in heterotaxy are summarised in Table 1 and Supplementary Table 

S5. The complexities of both cardiovascular and noncardiovascular abnormalities likely 

contribute to poor outcomes.120 Increased mortality following any cardiac surgery has been 

observed in the Society of Thoracic Surgeons’ database.129,130 Mortality after initial single 

ventricle palliation is reported to range from 10 to 23%.121,129,131,132 In the setting of total 

anomalous pulmonary venous return, poor outcomes may be related to hypoplastic 

pulmonary veins and increased pulmonary vascular reactivity.131–133 Despite these 

challenges, there was similar survival between heterotaxy and non-heterotaxy patients 

undergoing primary repair for total anomalous pulmonary venous return but increased need 

for pulmonary vein re-operation.134 Mortality rates after stage 3 palliation ranged widely 

from as high as 19–43%123,135,136 to as low as 3–4% in recent studies.123,124,129 Complex 

anatomy can potentially complicate cardiac transplantation but did not impact early (or late) 

graft survival;137 however, early mortality was recently reported in two of five patients 

undergoing cardiac transplantation.138 Overall, there is strong evidence that heterotaxy 

confers significant peri-operative mortality risk.

Post-operative respiratory morbidity was frequently observed.130 Up to 40% of patients with 

heterotaxy and CHD have dysfunctional airway cilia similar to primary ciliary 

dyskinaesia.139 Indeed, ciliopathy is a suspected developmental mechanism for 

cardiovascular and non-cardiovascular malformations.116 Respiratory ciliary dysfunction, 

diagnosed by nasal nitric oxide levels or nasal video microscopy, has been associated with 

post-operative respiratory complications, including failed extubation, respiratory failure, 

respiratory infection, stridor, pleural effusion, atelectasis, pneumothorax, or pulmonary 

oedema, as well as with the need for tracheostomy.140 It has been suggested that beta-

agonist therapy may be effective by improving ciliary motility.140,141
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Splenic abnormalities including asplenia (often left atrial isomerism) polysplenia (often right 

atrial isomerism) or the presence of accessory splenule are frequently observed.142 Asplenia 

clearly increases risk of bacterial infections in children.143 Splenic function in the setting of 

polysplenia may also be impaired and should be evaluated using scintigraphy.144 Sepsis was 

the cause of early post-operative mortality in 13% of deaths in a large heterotaxy 

population.145 Oropharyngeal malformations including micrognathia, choanal atresia, and 

cleft lip/palate can contribute to airway management difficulties.146,147 Renal anomalies 

including renal agenesis, cystic malformation, and horseshoe kidney are also frequently 

observed.132,147

The surgical outcomes in heterotaxy are improving, but persistent challenges include 

complex anatomy such as abnormal cardiac position, hypoplastic and anomalous pulmonary 

veins, and single ventricle morphology, predisposition for arrhythmia, and pulmonary and 

immunological dysfunction.

Turner syndrome

Turner syndrome occurs in approximately one in 2000 female live births and is caused by 

complete or partial absence of the X chromosome.148,149 Features include short stature, 

ovarian dysgenesis, webbed neck, low posterior hairline, and widely spaced nipples.150 

There is a high rate of foetal mortality, often in the setting of foetal hydrops.151 Those 

surviving to birth often have cardiovascular malformations including bicuspid aortic valve, 

coarctation of the aorta, partial anomalous pulmonary venous return, persistent left superior 

caval vein, and hypoplastic left heart syndrome.152–155 Turner syndrome accounts for at 

least 5% of coarctation of the aorta among girls, which may indicate karyotype screening of 

all female neonates with coarctation.156 There is also significant long-term risk of aortic 

dilation and dissection that is likely under-recognised.157,158 Electrocardiographic 

abnormalities including prolonged QT interval are frequently encountered, but risk of life-

threatening arrhythmia has not been established.159

Turner syndrome does not appear to increase mortality risk after repair of coarctation of the 

aorta but has been associated with longer hospitalisation (Table 1 and Supplementary Table 

S6).160 By comparison, mortality appears to be significantly increased in patients with 

hypoplastic left heart syndrome – for instance, 9 out of 11 infants with Turner syndrome 

undergoing Norwood stage 1 operation died by 4 months of age as per the Congenital Heart 

Surgeons’ Society database.25 In a retrospective single institution study, 8 out of 10 infants 

with Turner syndrome undergoing stage 1 palliation for hypoplastic left heart syndrome died 

before stage 2 operation, and both the survivors were mosaic XO.161 In a more recent series, 

all four patients with Turner syndrome undergoing stage 1 palliation survived to hospital 

discharge, but three were reported to have died before stage 3 palliation.160 A precise 

explanation for these outcomes has not been established thus far, but lymphatic 

abnormalities may contribute.161 Automatic karyotype screening in girls with hypoplastic 

left heart syndrome may be indicated because some features develop over time or may be 

subtle in mosaic cases.

Predisposition to vascular complications were described in earlier case series that reported 

significant post-operative haemorrhage and risk for aortic rupture, possibly related to 
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increased arterial tissue fragility and peri-operative systemic hypertension.162,163 

Fortunately, improvements in surgical technique and intensive care have effectively reduced 

post-operative bleeding risk. Morphological abnormalities such as elongation of the 

transverse arch (present in 50% of cases) may impact surgical approach,152 which may lead 

to longer cross-clamp time during coarctation repair.160 Although unlikely to develop in the 

early post-operative period, there is established risk for dissection after surgical repair or 

transcatheter stenting of aortic coarctation.164–166 Small case series have provided evidence 

that balloon angioplasty or stent placement for coarctation is safe and effective in the short 

term,167,168 but covered stents may be the best approach in the context of intrinsically 

abnormal arterial tissue.

The non-cardiovascular abnormalities that potentially impact peri-operative risk and 

outcomes include the lymphatic, renal, and endocrine systems. Lymphatic dysfunction can 

present as foetal lymphoedema or pulmonary lymphatic anomalies such as congenital 

pulmonary lymphangiectasia, which may predispose to post-operative chylothorax.169 

Postnatal peripheral lymphoedema may be a clue to Turner syndrome diagnosis but has no 

clear clinical impact and usually resolves by 2 years of age without intervention.149 

Abnormalities of the renal and urinary system are present in 30–40% of patients, including 

horseshoe kidney in 10%.149 Hypothyroidism develops in up to 25% of cases, most 

commonly autoimmune related, and annual thyroid screening is recommended starting at 4 

years of age.149,170 In summary, Turner syndrome most clearly impacts outcomes for 

hypoplastic left heart syndrome. Further investigation is needed to explain these poor 

outcomes and develop novel approaches and interventions. Arteriopathy associated with 

Turner syndrome predisposes to hypertension and aortic complications, such as dissection, 

mandating acute peri-operative blood pressure management and longitudinal follow-up.

Williams syndrome

Williams syndrome occurs in approximately one in 10,000 live births171 and is associated 

with 7q11.23 microdeletion. Haploinsufficiency of the elastin gene (ELN) is responsible for 

the cardiovascular manifestations. Facial features during infancy include a short upturned 

nose with a flat nasal bridge, peri-orbital puffiness, and long philtrum and later develop into 

full lips, wide smile, and coarse appearance. Relative strengths in verbal skills and social 

personality may belie intellectual disability that is present in most cases.172 Familial supra-

valvar aortic stenosis is associated with ELN mutations and presents with similar 

cardiovascular features but none of the non-cardiovascular features.

The spectrum of vascular manifestations in Williams syndrome is consistent with 

generalised arteriopathy. The majority of patients with Williams syndrome have supra-valvar 

aortic stenosis (45–75%), which may be “hourglass” or “diffuse” type.173 Severe supra-

valvar aortic stenosis is unlikely to regress and can be progressive,174–176 but mild stenosis 

is likely to remain stable.176–178 Additional vascular findings include branch pulmonary 

stenosis, peripheral pulmonary artery stenosis, supra-valvar pulmonary stenosis, and stenosis 

of the thoracic aorta, as well as bicuspid aortic valve and mitral valve prolapse.173 The 

pulmonary arterial lesions often spontaneously improve or resolve over time,174–176,178 but 

regression also is less likely when severe stenosis is present.179 Surgical repair of supra-
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valvar aortic stenosis in patients with Williams syndrome has good mortality outcomes with 

no significant difference in long-term survival compared with familial or sporadic supra-

valvar aortic stenosis.180 On the other hand, early mortality can be as high as 20% for cases 

presenting with the combination of severe supra-valvar aortic stenosis and moderate-to-

severe pulmonary stenosis.179,181

Balloon angioplasty of supra-valvar aortic stenosis has been dispelled due to lack of 

success.176 After transcutaneous stent placement for native or residual post-operative aortic 

coarctation, there is significant risk for developing re-stenosis, characterised by fibrosis and 

vascular smooth muscle cell proliferation.182,183 Indeed, patients with stenosis of the 

thoracic aorta have high re-intervention rates.184 The pulmonary arteries are also 

predisposed to re-stenosis, aneurysm formation, intimal flap formation, dissection, and 

rupture after catheter-based interventions.185,186 These outcomes indicate that arteriopathy 

may limit the effectiveness and increase risk factors when performing catheter-based 

interventions for arterial stenoses.

It is critical to recognise the risk of sudden cardiac death in patients with Williams 

syndrome, particularly during procedural sedation or anaesthesia or coronary 

angiography.179,187–190 This risk is highest in those with coronary ostial stenosis or severe 

biventricular outflow tract obstruction. Among 242 patients with Williams syndrome 

undergoing 435 cardiac operations or catheter-based interventions, described in the Pediatric 

Cardiac Care Consortium database, 12 of 15 deaths occurred in the setting of biventricular 

outflow tract obstruction.185 Coronary ostial stenosis is present in at least 5% of cases and is 

more common in the “diffuse” type of supra-valvar aortic stenosis or when stenosis of the 

thoracic aorta is present.178,191 Potential mechanisms of coronary stenosis include adhesion 

of aortic valve leaflets, overhanging of the supra-valvar ring, or reactive changes to 

hypertension. Coronary artery stenosis can develop during childhood in the absence of 

supra-valvar aortic stenosis,192,193 and dilation and tortuosity of the coronary arteries are 

well recognised.194 These observations suggest primary arteriopathic mechanisms. QT 

interval prolongation is present in up to 15% of cases, which may predispose to ventricular 

dysrhythmia and also contribute to sudden death risk.195,196 As coronary stenosis can be 

sub-clinical, it is critical that patients undergo complete assessment of the coronary arteries 

when appropriate and that providers be cognizant of the risk factors for sudden death around 

the time of interventional procedures.

Systemic hypertension develops in up to 50% of individuals, which is secondary to renal 

artery stenosis in some cases. In most cases, hypertension may rather be due to abnormal 

vascular function or morphology in the distal arteries, but the precise mechanisms are not 

well understood.197 Cerebral artery stenosis causing ischaemic stroke has been observed in 

children and should be suspected if neurological changes develop.198 Selecting target blood 

pressure ranges around the time of procedures can be complicated by the presence of pre-

existing hypertension combined with coronary or cerebral artery stenosis, which requires 

highly attentive pre-operative and post-operative care.

Owing to a 15–30% prevalence of sub-clinical hypothyroidism, often due to thyroid 

hypoplasia, thyroid function testing is recommended every 4 years, and pre-operative 
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evaluation should include thyroid function tests and clinical evaluation for symptoms.199–202 

Congenital hypothyroidism due to severe thyroid hypoplasia has also been reported.203 

Airway management may be challenging due to facial dysmorphism.200 Based on a concern 

for mild myopathy in some patients, there have been recommendations to avoid the use of 

succinylcholine and closely monitor the effects of non-depolarising neuromuscular 

blockade.200 Anomalies of the kidneys and urinary tract, such as renal aplasia, kidney 

duplication, horseshoe kidney, and bladder diverticuli, are present in up to 40% of the 

cases.204,205 Proteinuria was observed in 25%of patients, suggesting that kidney function 

should be monitored closely.206 Although there is predisposition for episodic 

hypercalcaemia and hypercalciuria, particularly as neonates, nephrocalcinosis is 

uncommon.207

Taken together, severe vascular stenosis of the systemic and/or pulmonary arteries increase 

risk, and asymptomatic patients may be at risk for sudden cardiac death in the setting of 

occult coronary artery stenosis. These risks pertain to cardiac and non-cardiac procedures.

Noonan syndrome and related disorders

Noonan syndrome has a prevalence of one in 1000–2500 live births.208 Disease-causing 

mutations in genes associated with the RAS-MAPK signaling pathway, such as PTPN11 
(most frequent), SOS1, RAF1, KRAS, NRAS, BRAF, SHOC2, and CBL, are identified in 

up to 60% of the cases.209 Cardiofaciocutaneous syndrome (BRAF, KRAS) and Costello 

syndrome (HRAS) are disorders related to Noonan syndrome with overlapping phenotypic 

features and genetic aetiologies.210 Neonatal features of Noonan syndrome include tall 

forehead, hypertelorism, arched eyebrows, low-set posteriorly rotated ears with thick helices, 

low posterior hairline, and excessive nuchal skin.209 Many of these features become more 

subtle over time, but short stature, pectus deformity, and neck webbing often remain 

prominent.208 Patients with Noonan syndrome often achieve normal intelligence,211 whereas 

cardiofaciocutaneous and Costello syndromes often have more significant developmental 

delay.210,212

At least 80% of patients with Noonan syndrome have cardiac lesions including pulmonary 

valve stenosis (50–60%) and secundum atrial septal defect (6–30%).208,213 Hypertrophic 

cardiomyopathy is present in ~ 20% of patients, especially RAF1 mutations, and portends 

worse survival than nonsyndromic hypertrophic cardiomyopathy;214,215 however, 

spontaneous regression occurred in nearly 20% of patients diagnosed in infancy.213 

Fibromuscular dysplasia with clinically significant narrowing of the coronary arteries has 

been reported in the setting of Noonan syndrome and hypertrophic cardiomyopathy.216 

Electrocardiographic abnormalities are frequently observed, including predominantly 

negative forces in the left pre-cordial leads, left axis deviation, and abnormal Q waves.217 

Although there are no particular rhythm abnormalities associated with Noonan syndrome, 

individuals with Costello syndrome (HRAS mutation) develop atrial tachycardia (often 

multi-focal) in ~50% of cases.218 Early post-operative mortality outcomes have not been 

frequently reported in Noonan syndrome. Cardiac transplantation in the setting of Noonan 

syndrome is described, but outcome data are similarly scant.219 Longitudinal screening for 

occult hypertrophic cardiomyopathy may be indicated, particularly among those with 
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PTPN11 or RAF1 mutations, in part to mitigate risk during cardiac and non-cardiac 

procedures.

Systemic features most likely to impact perioperative outcomes are haematological and 

lymphatic abnormalities. Haematological abnormalities such as platelet dysfunction and 

coagulation factor deficiency are present in 30–65% of cases.209,220–223 Severe congenital 

thrombocytopaenia has been described.224 A recent study reported frequent easy bruising 

and post-surgical bleeding (15–25%), platelet dysfunction (80%), and factor VII deficiency 

(20%).225 Bleeding diathesis may predispose patients to spontaneous gastrointestinal or sub-

arachnoid haemorrhage, which may respond to administration of recombinant factor 

VII.226,227 Owing to the risk of coagulopathy, complete blood count and basic coagulation 

testing is warranted before operations, haematology consultation should be considered, and 

aspirin may be avoided.208,209

Lymphatic abnormalities are observed in ~20% of cases.209 Peripheral lymphoedema often 

spontaneously resolves within the first several years but can have late onset.228 Similar to 

Turner syndrome, pulmonary lymphatic abnormalities including congenital pulmonary 

lymphangiectasia may predispose to chylothorax.169,229–231 Post-operative pericardial and 

pleural effusions were not significantly increased in a series of ~120 operations.213 

Cutaneous leaking of lymphatic fluid from a femoral vascular access site due to 

lymphangiectasia has been reported during cardiac catheterisation.232

Taken together, Noonan syndrome and related disorders are notable for genotype–phenotype 

relationships such as the associations between RAF1 and hypertrophic cardiomyopathy and 

HRAS and atrial tachycardia. Bleeding and lymphatic abnormalities may complicate the 

peri-operative course. Additional peri-operative outcome studies are warranted.

Marfan syndrome and related disorders

Marfan syndrome is present in approximately one in 5000 live births and most commonly 

caused by mutations in the FBN1 gene, which encodes the extracellular matrix protein 

fibrillin-1.233 Skeletal abnormalities – for example, pectus deformity, long arms, short upper 

body segment, craniofacial dysmorphism, and arachnodactyly – and ocular abnormalities – 

such as ectopia lentis and myopia – are often present.234 Cardiovascular involvement 

consists of aortopathy, characterised by thoracic aortic aneurysm and risk for dissection, and 

mitral valve prolapse. Development and intellectual ability are typically normal. Although 

most patients with Marfan syndrome do not require cardiac surgery until adulthood,235 

excellent operative survival has been demonstrated in children undergoing aortic root 

replacement.236–238 Peri-operative providers should recognise risk for pneumothorax and 

other pulmonary co-morbidities including pulmonary emphysema.239 Pectus deformity or 

severe scoliosis may also impact surgical approach and recovery. Some patients with 

particularly severe cardiovascular disease are referred to as having neonatal Marfan 

syndrome, which is associated with mutations in exons 24–32 of FBN1.240,241 

Arachnodactyly, congenital contractures, and crumpled ears feature prominently in these 

neonates, who often present with severe mitral and tricuspid valve regurgitation, leading to 

cardiac failure and death within the first few months of life. Rare cases of surgical success 

including quadrivalvar replacement and cardiac transplantation have been reported.242,243
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Loeys–Dietz syndrome, which is associated with mutations in the TGF-β receptor genes 

TGFBR1 and TGFBR2, has overlapping but distinct phenotypic features with Marfan 

syndrome.244 Systemic features include hypertelorism, bifid uvula, cleft palate, 

craniosynostosis, and velvety/thin skin. Talipes equinovarus and camptodactyly may also be 

diagnostic clues in a neonate.245 The major cardiovascular manifestations are generalised 

arterial tortuosity and risk for aneurysm and dissection. Additional cardiovascular lesions 

include bicuspid aortic valve, atrial septal defect, and mitral valve prolapse. Vascular disease 

in Loeys–Dietz syndrome is typically more severe than Marfan syndrome with risk of rapid 

progression and aortic dissection. Dissection is described as early as 6 months of age.246 

There is also often more extensive arterial involvement, which may require complete aortic 

replacement. Tortuosity and aneurysm of the brachiocephalic and intra-cranial arteries may 

predispose to cerebrovascular events.247,248 Despite the aggressive vascular features of the 

disease, successful aortic root replacement in infancy has been reported.249 Furthermore, 

there were no operative deaths among two series of children with Loeys–Dietz syndrome 

undergoing aortic root replacement.246,250 Cardiovascular complications in the setting of 

complex CHD have included progressive pulmonary artery dilation and rupture and post-

operative mitral leaflet rupture.245,251,252 Similar to Marfan syndrome, patients with Loeys– 

Dietz syndrome have increased risk of post-operative pneumothorax.247,250 Careful peri-

operative positioning should be utilised due to risk of low bone mineral density and 

increased fracture risk as well as cervical spine anomalies.247,253–255 Tortuosity or aneurysm 

of the peripheral arteries also may impact vascular access.247

Taken together, early post-operative outcomes are generally favourable for these conditions, 

but the risk of recurrent aneurysm or dissection mandates lifelong surveillance. Loeys–Dietz 

syndrome has unusual characteristics that may not be well recognised due to the more recent 

discovery and characterisation of the disorder.

Alagille syndrome

Alagille syndrome has a prevalence of at least one in 70,000 live births and is associated 

with the Notch signaling pathway genes JAG1 (97% of cases) and NOTCH2 (1% of 

cases).256 The hallmark systemic manifestations include bile duct paucity, resulting in 

cholestasis, facial dysmorphism – deep-set eyes, prominent ears, triangular face with broad 

forehead, and pointed chin – vertebral anomalies, and ocular anomalies, often posterior 

embryotoxon. CHD is present in at least 90% of the cases. The most common cardiovascular 

findings are right-sided lesions including proximal branch pulmonary artery stenosis, 

peripheral pulmonary artery stenosis, tetralogy of Fallot, or pulmonary valve stenosis. Left-

sided lesions and septal defects are also observed but are less frequent.257 In addition to the 

hallmark systemic features, renal anomalies are observed in ~40% of patients, which 

includes 20% with renal dysplasia and 5% risk of developing chronic renal failure.258 There 

is evidence that patients with Alagille syndrome have relatively poor longitudinal outcomes 

in the setting of tetralogy of Fallot or pulmonary atresia with ventricular septal defect;257,259 

however, positive early outcomes were recently reported among 15 patients with pulmonary 

atresia and major aortopulmonary collateral arteries260 and six patients undergoing primary 

surgical reconstruction of peripheral pulmonary artery stenosis.181 Owing to congenital 

biliary anomalies, Alagille syndrome may present the unusual challenge of requiring 
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paediatric cardiac surgery in patients with severe liver disease; two small case series have 

reported operative mortality in two out of four children with Alagille syndrome and end-

stage liver disease undergoing cardiac surgery.261,262

It is increasingly clear that Alagille syndrome is a disorder characterised by diffuse 

arteriopathy and that arterial anomalies – aneurysm or stenosis – significantly contribute to 

poor outcomes. In a large cohort of 268 patients with Alagille syndrome, systemic arterial 

anomalies or intra-cranial vascular events were present in nearly 10% of patients, and 

vascular accidents were responsible for 34% of the observed mortality.263 Spontaneous 

haemorrhage in the gastrointestinal tract, nasal/oral mucosa, and uterine lining are also 

reported in the absence of liver failure. It is speculated that elevated levels of apolipoprotein 

E may impair normal haemostasis,264 but a primary arterial fragility may be likely. A unique 

case report of a child with recurrent aortopulmonary shunt dehiscence due to extensive 

atherosclerosis and plaque at the anastomosis site has prompted some to consider routine 

screening and treatment for dyslipidaemia to prevent exacerbation of arterial disease in these 

patients.265 Taken together, systemic arteriopathy presents significant challenges to both 

early and late survival outcomes.

Trisomy 13 and 18

Patients with trisomy 13 – Patau syndrome – or trisomy 18 – Edwards syndrome – have 

severe co-morbidities and poor prognosis with >90% of the affected infants dying by age 1 

year. Given the severe multi-systemic nature of these disorders, the presence of CHD may 

not impact overall survival.266 Cardiac lesions are most commonly septal defects, but left 

ventricular non-compaction associated with progressive heart failure has been described in 

trisomy 13.267,268 Despite poor overall survival, cardiac operations including palliative and 

complete repairs may be beneficial in select groups.269,270 The care for these patients and 

families requires a balanced multidisciplinary approach including palliative care specialists.

CHARGE syndrome

CHARGE syndrome is present in approximately one in 8500 live births.271 Most cases 

(~70%) are associated with mutation in the CHD7 gene, which encodes a chromodomain 

helicase DNA-binding protein, and are rarely associated with mutation in SEMA3E;272,273 

22q11 deletion has also been described in patients clinically diagnosed with CHARGE 

syndrome.274 The major diagnostic criteria (“four C’s”) are coloboma, choanal atresia, 

cranial nerve dysfunction, and characteristic ear anomalies, external and middle ear 

anomalies.275 CHD is present in ~75% of patients and includes conotruncal and septal 

defects, including atrioventricular septal defects.272,276 Forebrain central nervous system 

malformations are frequently observed,277 yet significant intellectual disability is not 

guaranteed.275 Immunological dysfunction including severe T-cell deficiency has been 

reported.278 Renal anomalies are observed in ~30–40% cases and include solitary kidney, 

hydronephrosis, renal hypoplasia, duplex kidneys, and vesicoureteral reflux.275

Peri-operative outcomes have not been frequently reported, but sub-optimal longitudinal 

outcomes for patients with conotruncal defects have been suggested.31 A major peri-

operative risk factor is the high frequency of anatomical and functional abnormalities of the 
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respiratory tract. Upper airway anomalies – choanal atresia, cleft lip/palate, and 

micrognathia – and laryngotracheal anomalies – tracheoesophageal fistula, laryngomalacia, 

tracheomalacia, sub-glottic stenosis, laryngeal cleft, and anterior larynx – may complicate 

airway management.279,280 Cranial nerve dysfunction – for example, cranial nerves IX and 

X – leads to pharyngeal and laryngeal dysfunction and poor airway protection, a problem 

that may be exacerbated by high frequency of gastroesophageal reflux.281 Indeed, post-

operative airway events are frequently encountered – 35% in a recent series – occurring most 

frequently after cardiac surgery.282 In an early case series, over half of deaths were attributed 

to pulmonary aspiration.283,284 Pituitary structural abnormalities may be associated with 

neonatal hypocortisolism and should be considered in cases of refractory hypotension.285,286

Rare genetic syndromes associated with CHD have features predisposing 

to poor perioperative outcomes that may be sub-optimally recognised by 

providers due to lack of familiarity

Ellis–van Creveld syndrome

Ellis–van Creveld syndrome is a rare autosomal-recessive disorder (EVC or EVC2 
mutations) with increased occurrence among the Amish population inhabiting Pennsylvania, 

United States of America.287 Frequent characteristics include short stature, polydactyly, 

short ribs, and dysplastic nails, hair, and teeth. Notably, cognitive development is normal. 

CHD is present in ~60% and includes common atrium, atrioventricular septal defect, and 

systemic and pulmonary venous abnormalities.288,289 Overall, three noteworthy 

retrospective studies have analysed cardiac surgical outcomes. A case series of nine patients 

undergoing cardiac surgery at a single centre from 2004 to 2009 observed a preponderance 

of respiratory morbidity.288 Death occurred within 150 days after surgery in four out of nine 

patients, primarily due to respiratory failure. Respiratory complications, including three of 

five survivors requiring tracheostomy, were attributed to a thoracic dystrophy similar to 

Jeune syndrome. Increased procedure-related respiratory morbidity was also observed in the 

Pediatric Health Information System database from 2004 to 2011.290 In fairly stark contrast 

with these reports, a review of the Pediatric Cardiac Care Consortium database from 1982 to 

2007 identified no operative mortality among 21 children undergoing cardiac surgery.289 

The reason for the discrepancy between these reports is unclear. Notably, thoracic dystrophy 

may improve with somatic growth, suggesting benefit of deferring surgery for as long as 

possible.288 Together, these observations indicate the need for complete pulmonary 

evaluation and consideration of invasive haemodynamic assessment before cardiac 

operations.

VACTERL

VACTERL association likely represents a genetically heterogeneous population consisting 

of vertebral defects, anal atresia, cardiac defects, tracheoesophageal fistula with oesophageal 

atresia, renal anomalies, and limb defects.291 The renal anomalies include unilateral 

agenesis, horseshoe kidney, cystic disease, and dysplasia, and there is risk for chronic kidney 

disease with progression to end-stage renal disease.292 In a cohort of 46 patients, 31 had 
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CHD, which was most frequently ventricular septal defect.293 Probably due to the currently 

imprecise nature of this diagnosis, there are little outcomes data available.

PHACES

PHACES association includes posterior fossa malformations, haemangioma – often large, 

segmental, and involving the head or neck – arterial anomalies, cardiac defects, eye 

abnormalities, and sternal defects.294 A genetic aetiology has not been established. Arterial 

manifestations include anomalous patterning, stenosis, occlusion, or aneurysm of the 

cervical and/or cerebral arteries, which are usually ipsilateral to the haemangioma.295,296 

Aortic arch sidedness is also often ipsilateral to the haemangioma.297 Cardiovascular 

malformations are present in ~40% of patients, including aberrant subclavian artery, 

coarctation of the aorta (~20%), and ventricular septal defect (~15%).298 Coarctation 

morphology is often complex and is rarely associated with bicuspid aortic valve.294 

Preparation for surgical repair of coarctation should include a complete evaluation of the 

aortic arch and head and neck arteries by cardiac catheterisation or other imaging modality 

to optimise surgical approach.294,299 Peri-operative providers should also recognise 

increased risk for subglottic haemangioma and risk for ischaemic stroke and seizures during 

infancy.300–302

Cri du chat syndrome

Cri du chat syndrome (5p15 deletion) has a prevalence of approximately one in 15,000 live 

births.303 A distinguishing feature is the characteristic high-pitched cry. Neonatal 

craniofacial features include microcephaly and round face with large nasal bridge, 

hypertelorism, and micrognathia. Severe psychomotor and growth delay is observed in most 

cases. Tracheal intubation may be complicated by the presence of laryngeal abnormalities 

including small larynx, narrow diamond-shaped larynx, and laryngomalacia, and large, 

floppy epiglottis.304 CHD is present in ~ 20% of the patients, including patent ductus 

arteriosus, ventricular septal defect, atrial septal defect, and right ventricular outflow tract 

obstructive lesions including tetralogy of Fallot.305 Outcomes data are limited, but a review 

of the Pediatric Cardiac Care Consortium from 1982 to 2002 identified 18 children 

undergoing cardiac surgery, including five complete tetralogy of Fallot repairs, who had 

good overall survival with one operative death.305

Jacobsen syndrome

Jacobsen syndrome has a prevalence of approximately one in 100,000 live births and is 

associated with a deletion on the long arm of chromosome 11 with break point at 11q23.306 

The pathogenic gene for cardiovascular manifestations may be ETS1.16 Dysmorphic 

features include skull deformity – for example, trigonocephaly – hypertelorism, strabismus, 

low posteriorly rotated ears, and syndactyly. Intellectual disability and behavioural 

abnormalities are observed in the majority of cases. CHD occurs in ~50% of cases, primarily 

consisting of ventricular septal defect or left-sided obstructive lesion, including up to 5% 

with hypoplastic left heart syndrome.307,308 Importantly, there is often increased bleeding 

risk due to a platelet disorder – Paris–Trousseau syndrome – characterised by neonatal 

thrombocytopaenia, which can be severe but improves with age, and platelet dysfunction, 

which often persists.306,308 Pre-operative evaluation of platelet function using 
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thromboelastography may be warranted. Airway management can be complicated by 

micrognathia and anterior laryngeal opening.309 Central hypothyroidism has been 

reported.310 Renal and urinary tract malformations, including dysplasia, hydronephrosis, and 

unilateral agenesis, occur rarely.306,307

Kabuki syndrome

Kabuki syndrome has a prevalence of approximately one in 32,000 live births and in most 

cases is associated with mutations in the MLL2 gene, which encodes a histone 

methyltransferase.311,312 Its naming is derived from a characteristic appearance of long 

palpebral fissures with lower eyelid eversion and arched eyebrows, resembling masks worn 

in Kabuki theatre. Another characteristic finding is foetal finger pads. Intellectual disability 

is present in ~90% and seizures in 12–25%.313–315 Cardiac defects are present in ~50% of 

cases and include ventricular septal defect, atrial septal defect, left-sided obstructive lesions 

– most commonly coarctation of the aorta – and tetralogy of Fallot.313,314,316 Abnormalities 

in humoral immunity, including low levels of IgA, total IgG, or IgG sub-classes, were 

observed in ~50%, which may explain the predisposition to upper respiratory infections, and 

potentially impacts peri-operative risk.317 Cleft lip/palate including sub-mucous clefts 

occurs in ~50%.313 Renal abnormalities include renal dysplasia, agenesis, horseshoe kidney, 

ectopic kidney, and hydronephrosis.316

Smith–Magenis syndrome

Smith–Magenis syndrome has a prevalence of approximately one in 25,000 live births318 

and is associated with the deletion of 17p11.2.318,319 Craniofacial features include broad 

face with hypertelorism and upslanting eyes, prognathism, low-set ears, cleft lip/palate, and 

ocular abnormalities.320 Mild-to-moderate developmental delay is often observed along with 

characteristic neurobehavioural features such as sleep disturbance with inverted circadian 

rhythm and predilection for self-injury.320 CHD is present in ~30–40% and includes 

ventricular septal defect, atrial septal defect, right-sided lesions including tetralogy of Fallot, 

and total anomalous pulmonary venous return.320–322 The cardiovascular risk profile 

includes predisposition for dyslipidaemia, including hypercholesterolaemia.323 Post-

operative ischaemic stroke in a young adult with premature cerebrovascular atherosclerosis 

has been reported.324 Immunoglobulin levels are low in ~20%.321 Hypothyroidism presents 

in ~30%.321 Epileptiform abnormalities are present in ~50%, and clinical seizures develop in 

~20–30%.320,325 Renal and urinary tract anomalies are present in ~15% and include renal 

dysplasia, small kidney, vesicoureteral reflux, renal agenesis, and ureteral duplication.320,326

Wolf–Hirschhorn syndrome

Wolf–Hirschhorn syndrome has a prevalence of approximately one in 20,000 live births and 

is associated with the deletion of 4p16.3.327,328 Patients characteristically have the 

appearance of a “Greek warrior helmet” with high forehead, prominent glabella, and 

protruding eyes with hypertelorism.328 Micrognathia, forehead haemangioma, and cleft lip/

palate also occur with increased frequency. Severe developmental delay is uniformly 

observed, and seizures occur in ~90% of individuals starting at a young age.329 CHD is 

present in ~50%, most commonly atrial septal defect, pulmonary stenosis, ventricular septal 

defect, and patent ductus arteriosus, but more complex lesions have been reported.328,330,331 
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Defects in humoral immunity, including common variable immunodeficiency and isolated 

IgA deficiency, are frequently observed.332 Renal and urinary tract defects are observed in 

~30% and include vesicoureteral reflux, renal agenesis, dysplasia, or hypoplasia, and 

horseshoe kidney.328

Cornelia de Lange syndrome

Cornelia de Lange syndrome, also known as Brachmann–de Lange syndrome, has a 

prevalence of approximately one in 10,000 live births and is caused by mutations in the 

NIPBL, SMC1A, or SMC3 genes, which encode gene products involved in the function of 

cohesin, a protein complex involved in cell division.333 Patients have consistent craniofacial 

features including short neck, low posterior hairline, hirsute forehead, arched and confluent 

eyebrows, and thick and long eyelashes.334 Mild-to-moderate intellectual disability is 

frequent.335 CHD is present in ~30% and includes pulmonary valve stenosis, peripheral 

pulmonary artery stenosis, atrial septal defect, ventricular septal defect, left-sided obstructive 

lesions, and tetralogy of Fallot; there is also risk for progressive atrioventricular valve 

dysplasia.336,337

Airway management may be complicated by micrognathia, cleft palate, sub-mucous cleft, 

short, stiff neck, and restricted mouth opening.338 Recurrent infections including fungal 

infections are reported at increased frequency, and humoral deficiency and T-cell 

abnormalities have been observed.339 Thrombocytopaenia has been observed in ~20%.340 

Renal and urinary tract anomalies are observed in ~40% of patients and most frequently 

renal dysplasia, pelvic dilation, and vesicoureteral reflux are observed.341 Seizures, often 

partial type, occur in ~25%.342

Holt–Oram syndrome

Holt–Oram syndrome, which is characterised by the triad of atrial septal defect, conduction 

abnormality, and upper limb malformation – most commonly thumb – has a prevalence of 

approximately one in 100,000 live births and is caused by mutations in the cardiac 

transcription factor TBX5.343 Cardiac lesions include atrial septal defect, which is most 

common, ventricular septal defect, and more complex lesions such as conotruncal defects, 

atrioventricular canal defects, and left-sided obstructive lesions.343 The most frequent 

conduction abnormality is atrioventricular block, most commonly first degree, which may be 

present in the absence of structural CHD.344 Aside from the risk of atrioventricular block or 

other conduction disturbances, there are typically no other significant co-morbidities 

expected to complicate peri-operative care.

Goldenhar syndrome

Goldenhar syndrome, also known as oculo-auriculovertebral spectrum, occurs in up to one 

in 6000 live births.345 Although suspected to be due to abnormal development of the first 

and second branchial arches, the genetic cause is presently unknown; however, 22q11 

deletion was recently reported in patients diagnosed with this disorder.346 The defining 

features include unilateral microtia, hemifacial microsomia with mandibular hypoplasia, 

ocular epibulbar dermoid, and cervical vertebral malformations.347 CHD is present in ~30% 

of cases and includes conotruncal defects, ventricular septal defect, and atrial septal 
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defect.345 Significant craniofacial distortion and cervical vertebral anomalies may 

complicate airway management.348 Renal and urinary tract anomalies include ectopic or 

fused kidneys, renal agenesis, and vesicoureteral reflux.349

Conclusion

The impact of a genetic syndrome and associated co-morbidities on the peri-operative course 

and outcomes cannot be understated (Table 3). Recognising the risk factors particular to 

specific genetic syndromes has the potential to prevent or ameliorate peri-operative 

complications and improve short-term and long-term outcomes (Table 2 and Supplementary 

Table S3). The development of peri-operative management protocols tailored to specific 

syndromes based on current knowledge may be an effective strategy to achieve these goals. 

Understanding the cause is essential to elucidate pathogenesis and develop new treatment 

strategies. As the capability to interrogate and comprehend the genetic basis of CHD 

improves and clinical availability of genetic testing proliferates, there are increasing 

opportunities for early diagnosis, risk stratification, genetic counselling, and anticipatory 

clinical care.350 We propose that these tasks may be most effectively achieved by the 

establishment of multi-disciplinary sub-specialty cardiovascular genetics services.

In order to advance peri-operative management, there are present and future needs to 

integrate registries containing careful phenotyping and clinical outcomes data – for example, 

Society of Thoracic Surgeons database and Pediatric Heart Network – with registries 

containing comprehensive genetic data – for example, the Pediatric Cardiac Genomics 

Consortium.351,352 There are a limited number of exemplary studies that illustrate the value 

of performing comprehensive genetic evaluations and specifically reporting not only positive 

genetic testing results but also negative results to optimise interpretation and 

generalisability.31,33 This design may be more challenging to implement in large registries 

but should be considered for establishment and updating of registries as genetic testing 

advances. As clinical investigators continue to delineate the clinical significance of genetic 

diagnoses and apply the evidence to peri-operative care, there is promise for improvement in 

both short-term and long-term outcomes, such as neurodevelopment, quality of life, and 

general health into adulthood.17,18,353
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Table 2

Classes of risks and suggested peri-operative precautions/actions for specific syndromes.

Class Syndromes Actions

Cardiac rhythm HTX (SND, AV block, tachyarrhythmia), WS (LQT,
  ventricular ectopy), TS (LQT), Costello (atrial
  tachycardia), Holt–Oram (AV block)

Maintenance of normal electrolyte levels, routine
  placement of temporary pacing wires

Vascular (systemic) TS, WS, LDS, PHACES Pre-operative vascular imaging studies, documentation
  of pre-operative BP, patient-specific BP goals,
  ultrasound-guided arterial access

Vascular (pulmonary) DS, HTX, EVC Pre-operative cardiac catheterisation, post-operative
  manoeuvers to minimise PVR

Myocardial HTX (non-compaction cardiomyopathy), trisomy 13
  (non-compaction cardiomyopathy)

Intra-operative myocardial protection, anticipatory post-
  CPB management of ventricular dysfunction

Respiratory Upper airway anomalies: DS, 22q11 deletion,
  CHARGE, PHACES, Cri du chat, Cornelia de Lange
Lower airway disease: DS, EVC, MFS/LDS

Pre-operative anatomic upper airway evaluation,
  extubation protocols, post-operative evaluation of
  airway protection mechanisms, otolaryngology/
  pulmonary consultation

Immunologic/infectious DS, 22q11 deletion, HTX, Kabuki, Smith–Magenis,
  Wolf–Hirschhorn, Cornelia de Lange

Immunology consultation, broad-spectrum
  antimicrobial prophylaxis, minimise invasive
  monitoring

Haematologic 22q11 deletion, NS, AGS, Jacobsen, Cornelia de Lange Haematology consultation, post-CPB antifibrinolytics,
  BP control, rapid access to blood products, liberal blood
  product administration

Neurologic Seizure: DS, 22q11 deletion, Kabuki, Smith–Magenis,
  Wolf–Hirschhorn

Seizure: neuroprotection, peri-operative EEG evaluation,
  normocalcaemia (22q11 deletion)

Cerebrovascular: AGS, PHACES, LDS, WS, NS
Cervical instability: DS, LDS

Cerebrovascular: pre-operative cerebrovascular imaging,
  cerebral perfusion pressure monitoring, urgent imaging
  for neurological changes
Cervical instability: appropriate positioning/support

Endocrine Hypothyroidism: DS, TS, WS, PHACES, Jacobsen,
  Smith–Magenis
Pituitary dysfunction: CHARGE

Pre-operative thyroid function testing, endocrinology
  consultation as needed, steroid replacement

Lymphatic DS, TS, NS Monitoring for chylothorax and sequelae if present, early
  transition to low and medium chain triglyceride diet/
  formula, minimise central venous pressure

AGS = Alagille syndrome; AV = atrioventricular; BP = blood pressure; CPB = cardiopulmonary bypass; DS = Down syndrome; EEG = 
electroencephalogram; EVC = Ellis–van Creveld; HTX = heterotaxy syndrome; LDS = Loeys–Dietz syndrome; LQT = prolonged QT interval; 
MFS = Marfan syndrome; NS = Noonan syndrome; PVR = pulmonary vascular resistance; SND = sinus node dysfunction; TS = Turner syndrome; 
and WS = Williams syndrome
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Table 3

Key points.

Genetic syndromes often present specific cardiovascular and non-cardiovascular co-morbidities that negatively impact mortality and morbidity
  outcomes

Diagnosis of a genetic syndrome allows for risk stratification, counseling on prognosis and recurrence risk, anticipatory peri-operative
  management, and therapy decisions

Syndrome-specific protocols for peri-operative evaluation and prophylactic tactics may improve peri-operative outcomes. Particular attention
  should be given to immunological, haematological, vascular, and neurological risks. Cardiac anaesthesia during non-cardiac procedures should
  be considered in the context of certain genetic syndromes

Improved peri-operative outcomes may translate to improved short-term and long-term outcomes and reduce long-term co-morbities and cost

Design and reporting of surgical database registries and clinical trials should clearly define diagnostic criteria for genetic syndromes and specify
  positive and negative genetic testing results

Integration of large clinical and genetic databases will advance clinical outcomes

The development of cardiovascular genetics services will provide sub-specialty expertise on specific aspects of care of patients with genetic
  diagnoses, which over time will be increasingly encountered
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