14,401 research outputs found

    The Competition for Shortest Paths on Sparse Graphs

    Get PDF
    Optimal paths connecting randomly selected network nodes and fixed routers are studied analytically in the presence of non-linear overlap cost that penalizes congestion. Routing becomes increasingly more difficult as the number of selected nodes increases and exhibits ergodicity breaking in the case of multiple routers. A distributed linearly-scalable routing algorithm is devised. The ground state of such systems reveals non-monotonic complex behaviors in both average path-length and algorithmic convergence, depending on the network topology, and densities of communicating nodes and routers.Comment: 4 pages, 4 figure

    Diamond growth in premixed propylene-oxygen flames

    Get PDF
    Diamond film growth in low-pressure premixed propylene/oxygen flames is demonstrated. Well-faceted films are grown at a pressure of 180 Torr and a fuel/oxygen ratio of 0.47. Using propylene as the fuel may greatly improve the economics of flame synthesis of diamond, since propylene is an order of magnitude cheaper than acetylene

    Unfolding simulations reveal the mechanism of extreme unfolding cooperativity in the kinetically stable alpha-lytic protease.

    Get PDF
    Kinetically stable proteins, those whose stability is derived from their slow unfolding kinetics and not thermodynamics, are examples of evolution's best attempts at suppressing unfolding. Especially in highly proteolytic environments, both partially and fully unfolded proteins face potential inactivation through degradation and/or aggregation, hence, slowing unfolding can greatly extend a protein's functional lifetime. The prokaryotic serine protease alpha-lytic protease (alphaLP) has done just that, as its unfolding is both very slow (t(1/2) approximately 1 year) and so cooperative that partial unfolding is negligible, providing a functional advantage over its thermodynamically stable homologs, such as trypsin. Previous studies have identified regions of the domain interface as critical to alphaLP unfolding, though a complete description of the unfolding pathway is missing. In order to identify the alphaLP unfolding pathway and the mechanism for its extreme cooperativity, we performed high temperature molecular dynamics unfolding simulations of both alphaLP and trypsin. The simulated alphaLP unfolding pathway produces a robust transition state ensemble consistent with prior biochemical experiments and clearly shows that unfolding proceeds through a preferential disruption of the domain interface. Through a novel method of calculating unfolding cooperativity, we show that alphaLP unfolds extremely cooperatively while trypsin unfolds gradually. Finally, by examining the behavior of both domain interfaces, we propose a model for the differential unfolding cooperativity of alphaLP and trypsin involving three key regions that differ between the kinetically stable and thermodynamically stable classes of serine proteases

    Diamond films from combustion of methyl acetylene and propadiene

    Get PDF
    To date diamond films grown with the combustion technique have used either acetylene or, rarely, ethylene as the fuel. However, there are barriers to large scale commercialization of the combustion technique using either fuel. For example, acetylene is relatively expensive and difficult to handle, while the use of ethylene gives relatively low growth rates. In this letter we propose replacing acetylene with MAPPTM gas, a commercial mixture of methyl acetylene and propadiene in liquefied petroleum gas (primarily propylene). MAPP gas is considerably cheaper, safer, and easier to handle than acetylene. Furthermore, the experiments described here suggest that MAPP gas flames are only slightly less efficient than acetylene flames at converting fuel carbon atoms into diamond

    BPSK system analysis using MEMS filters

    Get PDF
    For some military applications, there exists a need for small custom radios. These radios need to be able to survive extreme environments and transmit the necessary data. This can be achieved by using banks of micromechanical filters. These small filters are post-CMOS compatible, allowing hundreds of high-Q filters to be incorporated over a typical RF transceiver die. Selection of these filters allows the band, channel, and bandwidth to be rapidly changed in operation. Having integrated Microelectromechanical Systems (MEMS) filters eliminates the need for off-chip components such as crystal references and Surface Acoustic Wave (SAW) filters. This allows for smaller, low power, high performance, shock hardened radios to be developed. This thesis will examine the simulation and system analysis of MEMS filters. In past literature, there have been advances in transceiver architecture that have reduced the number of parts, but many of these approaches have sacrificed RF performance. The zero-IF and LOW-IF direct conversion sacrifices RF performance, but is good enough for normal applications. For specific military applications, this RF sacrifice is not acceptable. This thesis will simulate a BPSK architecture to develop an understanding that the post-CMOS filters can reliably be trusted upon in communication systems. The initial system to be simulated will be a 5-channel MEMS filter. This thesis will also present actual results of the 5-channel MEMS filter
    • …
    corecore