583 research outputs found

    Indefinite Morse 2-functions; broken fibrations and generalizations

    Full text link
    A Morse 2-function is a generic smooth map from a smooth manifold to a surface. In the absence of definite folds (in which case we say that the Morse 2-function is indefinite), these are natural generalizations of broken (Lefschetz) fibrations. We prove existence and uniqueness results for indefinite Morse 2-functions mapping to arbitrary compact, oriented surfaces. "Uniqueness" means there is a set of moves which are sufficient to go between two homotopic indefinite Morse 2-functions while remaining indefinite throughout. We extend the existence and uniqueness results to indefinite, Morse 2-functions with connected fibers.Comment: 74 pages, 41 figures; further errors corrected, some exposition added, other exposition improved, following referee's comment

    A planning program and the design for a single enterprise community in the Subarctic

    Get PDF
    Thesis (M.C.P.) Massachusetts Institute of Technology. Dept. of Architecture, 1956.ACCOMPANYING drawings held by MIT Museum.Includes bibliographies.by James Arthur Hatcher and David Dunsmore Wallace.M.C.P

    Permutation combinatorics of worldsheet moduli space

    Get PDF
    52 pages, 21 figures52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published version52 pages, 21 figures; minor corrections, "On the" dropped from title, matches published versio

    Computational tool to accelerate CMAS-resistant TBC design for aero-turbine applications

    Get PDF
    Infiltration of molten Calcium-Magnesium Alumino-Silicate (CMAS) deposits is a primary cause of failure of thermal barrier coatings (TBCs) on aero-turbine engine blades. Cooling of infiltrated CMAS deposits leads to densification and subsequent cracking and delamination driven by internal strain energy due to the thermal mismatch between the solidified CMAS melt and the porous columnar TBC architecture. Infiltration kinetics, and thus onset of mechanical failure, are strongly affected by the thermodynamic properties of the CMAS melt (viscosity, melting point, etc.) and the crystalline reaction products formed due to the interaction between the CMAS melt and TBC material, which can block the channels in the TBC structure and inhibit further melt infiltration. Additional complexity is added due to the wide range of CMAS deposit compositions found in nature, which can lead to vastly disparate melt behavior and CMAS-TBC reactivity dependent on both deposit and coating composition. A robust model to predict TBC failure and enable the design of novel CMAS-resistant TBC materials therefore relies on the ability to model CMAS melt properties and the reactivity between melt and coating. A computational design tool is currently under development to enable Integrated Computational Materials Engineering (ICME)-informed modeling of CMAS-TBC interaction and coating performance. This computational tool leverages Calculation of PHase Diagram (CALPHAD)-based thermodynamic databases which include the components of CMAS-Fe deposits as well as RE zirconate (RE=Y,Gd) TBC materials. A tool framework compatible with the Thermo-Calc software will allow for wide availability of the design tool across academic and industrial R&D communities. The tool enables TBC design by streamlining thermodynamic calculations related to CMAS melt properties and CMAS/TBC reactivity, feeding results into property and performance models. A CMAS selection module contains a compiled list of CMAS compositions while also allowing for user-defined compositions, allowing for quick assessment of CMAS melt properties across relevant deposit compositions and ranges. Efficient comparison of CMAS/TBC interactions can be performed across a large number of pre-defined or user-defined CMAS chemistries. CMAS reactivity may also be assessed across a range of RE/Zr ratios as well as compared between various RE systems. Examples of tool functionalities and relevant thermodynamic calculations will be presented. Future work includes integration with thermomechanical and kinetic infiltration models to predict TBC performance

    Diagnostic Yield of Dental Radiography and Cone-Beam Computed Tomography for the Identification of Anatomic Structures in Cats

    Get PDF
    The objective of this study was to evaluate the diagnostic yield of dental radiography (DR) and 3 cone-beam computed tomography (CBCT) methods for the identification of predefined anatomic structures in cats. For 5 feline cadaver heads and 22 client-owned cats admitted for evaluation and treatment of dental disease, a total of 22 predefined anatomic structures were evaluated separately by use of the DR method and 3 CBCT software modules [multiplanar reconstructions (MPR), tridimensional (3-D) rendering, and reconstructed panoramic views (Pano)]. A semi quantitative scoring system was used, and mean scores were calculated for each anatomic structure and imaging method. The Friedman test was used to evaluate values for significant differences in diagnostic yield. For values that were significant the Wilcoxon signed rank test was used with the Bonferroni-Holm multiple comparison adjustment to determine significant differences among each of the possible pairs of diagnostic methods. Differences of diagnostic yield among the DR and 3 CBCT methods were significant for 17 of 22 anatomic structures. For these structures, DR scores were significantly higher than scores for Pano views for 2 of 17 structures, but DR scores were significantly lower than scores for Pano views for 6 anatomic structures, tridimensional rendering for 10 anatomic structures, and MPR for 17 anatomic structures. In conclusion, it was found that CBCT methods were better suited than DR for the identification of anatomic structures in cats. Results of this study can serve as a basis for CBCT evaluation of dentoalveolar and other maxillofacial bony lesions in cats

    Changes in gross oxygen production, net oxygen production, and air-water gas exchange during seasonal ice melt in Whycocomagh Bay, a Canadian estuary in the Bras d\u27Or Lake system

    Get PDF
    Sea ice is an important control on gas exchange and primary production in polar regions. We measured net oxygen production (NOP) and gross oxygen production (GOP) using near-continuous measurements of the O2∕Ar gas ratio and discrete measurements of the triple isotopic composition of O2, during the transition from ice-covered to ice-free conditions, in Whycocomagh Bay, an estuary in the Bras d\u27Or Lake system in Nova Scotia, Canada. The volumetric gross oxygen production was 5.4+2.8-1.6 role= presentation \u3e5.4+2.8−1.6 mmol O2 m−3 d−1, similar at the beginning and end of the time series, and likely peaked at the end of the ice melt period. Net oxygen production displayed more temporal variability and the system was on average net autotrophic during ice melt and net heterotrophic following the ice melt. We performed the first field-based dual tracer release experiment in ice-covered water to quantify air–water gas exchange. The gas transfer velocity at \u3e90 % ice cover was 6 % of the rate for nearly ice-free conditions. Published studies have shown a wide range of results for gas transfer velocity in the presence of ice, and this study indicates that gas transfer through ice is much slower than the rate of gas transfer through open water. The results also indicate that both primary producers and heterotrophs are active in Whycocomagh Bay during spring while it is covered in ice

    Topological evaluation of volume reconstructions by voxel carving

    Get PDF
    Space or voxel carving [1, 4, 10, 15] is a technique for creating a three-dimensional reconstruction of an object from a series of two-dimensional images captured from cameras placed around the object at different viewing angles. However, little work has been done to date on evaluating the quality of space carving results. This paper extends the work reported in [8], where application of persistent homology was initially proposed as a tool for providing a topological analysis of the carving process along the sequence of 3D reconstructions with increasing number of cameras. We give now a more extensive treatment by: (1) developing the formal framework by which persistent homology can be applied in this context; (2) computing persistent homology of the 3D reconstructions of 66 new frames, including different poses, resolutions and camera orders; (3) studying what information about stability, topological correctness and influence of the camera orders in the carving performance can be drawn from the computed barcodes

    A role for Tbx5 in proepicardial cell migration during cardiogenesis

    Get PDF
    Transcriptional regulatory cascades during epicardial and coronary vascular development from proepicardial progenitor cells remain to be defined. We have used immunohistochemistry of human embryonic tissues to demonstrate that the TBX5 transcription factor is expressed not only in the myocardium, but also throughout the embryonic epicardium and coronary vasculature. TBX5 is not expressed in other human fetal vascular beds. Furthermore, immunohistochemical analyses of human embryonic tissues reveals that unlike their epicardial counterparts, delaminating epicardial-derived cells do not express TBX5 as they migrate through the subepicardium before undergoing epithelial-mesenchymal transformation required for coronary vasculogenesis. In the chick, Tbx5 is expressed in the embryonic proepicardial organ (PEO), which is composed of the epicardial and coronary vascular progenitor cells. Retrovirus-mediated overexpression of human TBX5 inhibits cell incorporation of infected proepicardial cells into the nascent chick epicardium and coronary vasculature. TBX5 overexpression as well as antisense-mediated knockdown of chick Tbx5 produce a cell-autonomous defect in the PEO that prevents proepicardial cell migration. Thus, both increasing and decreasing Tbx5 dosage impairs development of the proepicardium. Culture of explanted PEOs demonstrates that untreated chick proepicardial cells downregulate Tbx5 expression during cell migration. Therefore, we propose that Tbx5 participates in regulation of proepicardial cell migration, a critical event in the establishment of the epicardium and coronary vasculature
    corecore