8,892 research outputs found

    Optical to near-infrared transmission spectrum of the warm sub-Saturn HAT-P-12b

    Get PDF
    We present the transmission spectrum of HAT-P-12b through a joint analysis of data obtained from the Hubble Space Telescope Space Telescope Imaging Spectrograph (STIS) and Wide Field Camera 3 (WFC3) and Spitzer, covering the wavelength range 0.3-5.0 μ\mum. We detect a muted water vapor absorption feature at 1.4 μ\mum attenuated by clouds, as well as a Rayleigh scattering slope in the optical indicative of small particles. We interpret the transmission spectrum using both the state-of-the-art atmospheric retrieval code SCARLET and the aerosol microphysics model CARMA. These models indicate that the atmosphere of HAT-P-12b is consistent with a broad range of metallicities between several tens to a few hundred times solar, a roughly solar C/O ratio, and moderately efficient vertical mixing. Cloud models that include condensate clouds do not readily generate the sub-micron particles necessary to reproduce the observed Rayleigh scattering slope, while models that incorporate photochemical hazes composed of soot or tholins are able to match the full transmission spectrum. From a complementary analysis of secondary eclipses by Spitzer, we obtain measured depths of 0.042%±0.013%0.042\%\pm0.013\% and 0.045%±0.018%0.045\%\pm0.018\% at 3.6 and 4.5 μ\mum, respectively, which are consistent with a blackbody temperature of 89070+60890^{+60}_{-70} K and indicate efficient day-night heat recirculation. HAT-P-12b joins the growing number of well-characterized warm planets that underscore the importance of clouds and hazes in our understanding of exoplanet atmospheres.Comment: 25 pages, 19 figures, accepted for publication in AJ, updated with proof correction

    Association between duration of delayed graft function, acute rejection and allograft outcome after deceased donor kidney transplantation

    Get PDF
    Prolonged duration of delayed graft function (DGF) may be associated with adverse allograft outcomes, but the association between threshold duration of DGF, acute rejection and long-term allograft loss remains undefined. We aimed to determine the impact of DGF duration on allograft outcomes and to assess whether this association was mediated by acute rejection.Using data from the Australian and New Zealand Dialysis and Transplant (ANZDATA) registry, Cox proportional modelling was used to determine the association between quartiles of DGF duration, acute rejection at 6 months and death-censored graft loss (DCGL). Mediation analysis was conducted to determine whether acute rejection was a causal intermediate between DGF and DCGL.Of 7668 deceased donor kidney transplants between 1997-2014, 1497 (19.5%) recipients experienced DGF requiring dialysis. The median (interquartile range) duration of DGF was 7(9) days, with 25% requiring dialysis for ≥14 days. Among recipients who had experienced DGF duration of 1-4 days, the adjusted HR for duration of 5-7, 8-13 and ≥14 days were 1.13 (95%CI 0.83-1.55;p=0.43), 1.44 (1.08-1.91;p=0.013), and 1.99 (1.50-2.65;

    Treatment with Methylphenidate for Attention Deficit Hyperactivity Disorder (ADHD) and the Risk of All-Cause Poisoning in Children and Adolescents:A Self-Controlled Case Series Study

    Get PDF
    BACKGROUND: Children and adolescents with attention deficit hyperactivity disorder (ADHD) are at higher risk of all-cause poisoning by drugs and chemicals (intentional or accidental). Currently, there is limited data on whether medication treatment for ADHD can reduce the risk of all-cause poisoning. METHODS: Patients aged 5–18 years with a methylphenidate (MPH) prescription and an incident poisoning diagnosis between January 2001 and June 2020 were identified from the Hong Kong Clinical Data Analysis and Reporting System. A self-controlled case series study design was used to compare the incidence rate ratios (IRRs) of all-cause poisoning during different risk windows (30 days before the first MPH prescription, exposure periods within 30 days of the first prescription, and periods of subsequent exposure) compared with the reference window (other non-exposure periods). RESULTS: 42,203 patients were prescribed ADHD medication in Hong Kong during the study period. Of these, 417 patients who had both an MPH prescription and poisoning incident recorded were included in the main analysis. Compared with other non-exposed periods, a higher risk of poisoning was found in the 30 days before the first prescription (IRR 2.64, 95% confidence interval [CI] 1.33–5.22) and exposure periods within 30 days of the first prescription (IRR 2.18, 95% CI 1.06–4.48), but not during prolonged exposure. However, compared with 30 days before the first prescription as well as exposure periods within 30 days of the first prescription, there was a lower risk during the subsequent exposure (IRRs 0.49 and 0.60, respectively). Similar results to the main analysis were also found in the subgroup analysis of intentional poisoning and females, but not in that of accidental poisoning and males. CONCLUSIONS: The risk of all-cause poisoning was higher shortly before and after the first MPH prescription and became lower during the subsequent prescription period. Our results do not support an association between the use of MPH and an increased risk of all-cause poisoning in children and adolescents and, in fact, suggest that longer-term use of MPH may be associated with a lower risk of all-cause poisoning, although this latter finding requires further study. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s40263-021-00824-x

    Three routes to the exact asymptotics for the one-dimensional quantum walk

    Full text link
    We demonstrate an alternative method for calculating the asymptotic behaviour of the discrete one-coin quantum walk on the infinite line, via the Jacobi polynomials that arise in the path integral representation. This is significantly easier to use than the Darboux method. It also provides a single integral representation for the wavefunction that works over the full range of positions, n,n, including throughout the transitional range where the behaviour changes from oscillatory to exponential. Previous analyses of this system have run into difficulties in the transitional range, because the approximations on which they were based break down here. The fact that there are two different kinds of approach to this problem (Path Integral vs. Schr\"{o}dinger wave mechanics) is ultimately a manifestation of the equivalence between the path-integral formulation of quantum mechanics and the original formulation developed in the 1920s. We discuss how and why our approach is related to the two methods that have already been used to analyse these systems.Comment: 25 pages, AMS preprint format, 4 figures as encapsulated postscript. Replaced because there were sign errors in equations (80) & (85) and Lemma 2 of the journal version (v3

    NMR spectroscopy of native and in vitro tissues implicates polyADP ribose in biomineralization.

    Get PDF
    Nuclear magnetic resonance (NMR) spectroscopy is useful to determine molecular structure in tissues grown in vitro only if their fidelity, relative to native tissue, can be established. Here, we use multidimensional NMR spectra of animal and in vitro model tissues as fingerprints of their respective molecular structures, allowing us to compare the intact tissues at atomic length scales. To obtain spectra from animal tissues, we developed a heavy mouse enriched by about 20% in the NMR-active isotopes carbon-13 and nitrogen-15. The resulting spectra allowed us to refine an in vitro model of developing bone and to probe its detailed structure. The identification of an unexpected molecule, poly(adenosine diphosphate ribose), that may be implicated in calcification of the bone matrix, illustrates the analytical power of this approach

    Low Temperature Opacities

    Full text link
    Previous computations of low temperature Rosseland and Planck mean opacities from Alexander & Ferguson (1994) are updated and expanded. The new computations include a more complete equation of state with more grain species and updated optical constants. Grains are now explicitly included in thermal equilibrium in the equation of state calculation, which allows for a much wider range of grain compositions to be accurately included than was previously the case. The inclusion of high temperature condensates such as Al2_2O3_3 and CaTiO3_3 significantly affects the total opacity over a narrow range of temperatures before the appearance of the first silicate grains. The new opacity tables are tabulated for temperatures ranging from 30000 K to 500 K with gas densities from 104^{-4} g cm3^{-3} to 1019^{-19} g cm3^{-3}. Comparisons with previous Rosseland mean opacity calculations are discussed. At high temperatures, the agreement with OPAL and Opacity Project is quite good. Comparisons at lower temperatures are more divergent as a result of differences in molecular and grain physics included in different calculations. The computation of Planck mean opacities performed with the opacity sampling method are shown to require a very large number of opacity sampling wavelength points; previously published results obtained with fewer wavelength points are shown to be significantly in error. Methods for requesting or obtaining the new tables are provided.Comment: 39 pages with 12 figures. To be published in ApJ, April 200

    Metal-Insulator Transitions in Degenerate Hubbard Models and Ax_xC60_{60}

    Get PDF
    Mott-Hubbard metal-insulator transitions in NN-fold degenerate Hubbard models are studied within the Gutzwiller approximation. For any rational filling with xx (integer) electrons per site it is found that metal-insulator transition occurs at a critical correlation energy Uc(N,x)=Uc(N,2Nx)=γ(N,x)ϵˉ(N,x)U_c(N,x)=U_c(N,2N-x)=\gamma(N,x)|\bar{\epsilon}(N,x)|, where ϵˉ\bar{\epsilon} is the band energy per particle for the uncorrelated Fermi-liquid state and γ(N,x)\gamma(N,x) is a geometric factor which increases linearly with xx. We propose that the alkali metal doped fullerides AxC60A_xC_{60} can be described by a 3-fold degenerate Hubbard model. Using the current estimate of band width and correlation energy this implies that most of AxC60{\rm A_xC_{60}}, at integer xx, are Mott-Hubbard insulators and A3C60{\rm A_3C_{60}} is a strongly correlated metal.Comment: 10 pages, Revte
    corecore