22,566 research outputs found

    The Great Albatross Philippine Expedition and Its Fishes

    Get PDF
    The Philippine Expedition of 1907-10 was the longest and most extensive assignment of the Albatross's 39-year career. It came about because the United States had acquired the Philippines following the Spanish-American War of 1898 and the bloody Philippine Insurection of 1899-1902. The purpose of the expedition was to surbey and assess the aquatic resources of the Philippine Islands. Dr. Hugh M. Smith, the Deputy Commissioner of the U.S. Bureau of Fisheries, was the Director of the Expedition. Other scientific participants were Frederick M. Chamberlain, Lewis Radcliffe, Paul Bartsch, Harry C. Fasset, Clarence Wells, Albert Burrows, Alvin Seale, and Roy Chapman Andrews. The expedition consisted of a series of cruises, each beginning and ending in Manila and exploring a different part of the island group. In addition to the Philippines proper, the ship also explored parts of the Dutch East Indies and areas around Hong Kong and Taiwan. The expedition returned great quantities of fish and invertebrate speciments as well as hydrographic and fisheries data; most of the material was eventually deposited in the Smithsonian Institution's National Museum of Natural History. The fisehs were formally accessioned into the museum in 1922 and fell under the car of Barton A. Bean, Assistant Curator of Fishes, who then recruited Henry W. Fowler to work up the material. Fowler completed his studies of the entire collection, but only part of it was ever published, due in part to the economic constraints caused by the Depression. The material from the Philippine Expedition constituted the largest single accession of fishes ever received by the museum. These speciments are in good condition today and are still being used in scientific research

    Instrumented Lumbar Corpectomy and Spinal Reconstruction Comparing rhBMP-2/Compression-Resistant Matrix, rhBMP-2/Absorbable Collagen Sponge/Ceramic Granules Mixture, and Autograft in Two Different Devices: A Study in Sheep

    Get PDF
    Study Design. Fusion success with rhBMP-2 and autograft in titanium or PEEK corpectomy devices was evaluated in a sheep lumbar corpectomy model. The 6 treatment groups included titanium mesh or PEEK corpectomy devices filled with rhBMP-2 on a compression-resistant matrix (CRM) carrier; rhBMP-2 in a morselized absorbable collagen sponge (ACS) carrier combined with resorbable ceramic granules; and autograft. Objective. The aim of this study was to determine fusion rates associated with 2 different preparations of rhBMP-2 as well as autograft in an instrumented ovine lumbar corpectomy model 6 months postoperatively. Summary of Background Data. Vertebral reconstruction with corpectomy devices requires bone graft. Bone graft substitutes have the potential to avoid a second operation, donor site pain, and attendant morbidity associated with autograft. Methods. Twenty-four sheep in 6 treatment groups underwent lumbar corpectomy via a retroperitoneal trans-psoas approach. Spines were reconstructed with autograft, rhBMP-2 on a CRM, or rhBMP-2 on an ACS mixed with ceramic granules. Grafting materials were placed in either a titanium mesh or PEEK conduit in spines with internal fixation. Computed tomographic (CT) scans were evaluated for fusion. Undecalcified histology was used to evaluate for fusion as well as the amount and extent of graft incorporation and graft resorption. Results. Regardless of corpectomy device used, rhBMP-2/CRM or rhBMP-2/ACS with MASTERGRAFT resulted in a 100% fusion rate. The autograft group had a lower (75%) radiographic fusion rate. Using either preparation of rhBMP-2 resulted in the length of the defect filling with solid bone. Autograft fragments and ceramic granules were incorporated into the fusion masses with much of the ceramic granules being resorbed by 6 months. Conclusion. Both of the rhBMP-2 formulations have the potential to effect bony fusion and vertebral reconstruction within the corpectomy devices

    Time-resolved velocity map imaging of methyl elimination from photoexcited anisole

    Get PDF
    To date, H-atom elimination from heteroaromatic molecules following UV excitation has been extensively studied, with the focus on key biological molecules such as chromophores of DNA bases and amino acids. Extending these studies to look at elimination of other non-hydride photoproducts is essential in creating a more complete picture of the photochemistry of these biomolecules in the gas-phase. To this effect, CH3 elimination in anisole has been studied using time resolved velocity map imaging (TR-VMI) for the first time, providing both time and energy information on the dynamics following photoexcitation at 200 nm. The extra dimension of energy afforded by these measurements has enabled us to address the role of πσ* states in the excited state dynamics of anisole as compared to the hydride counterpart (phenol), providing strong evidence to suggest that only CH3 fragments eliminated with high kinetic energy are due to direct dissociation involving a 1πσ* state. These measurements also suggest that indirect mechanisms such as statistical unimolecular decay could be contributing to the dynamics at much longer times

    Linear models for control of cavity flow oscillations

    Get PDF
    Models for understanding and controlling oscillations in the flow past a rectangular cavity are developed. These models may be used to guide control designs, to understand performance limits of feedback, and to interpret experimental results. Traditionally, cavity oscillations are assumed to be self-sustained: no external disturbances are necessary to maintain the oscillations, and amplitudes are limited by nonlinearities. We present experimental data which suggests that in some regimes, the oscillations may not be self-sustained, but lightly damped: oscillations are sustained by external forcing, such as boundary-layer turbulence. In these regimes, linear models suffice to describe the behaviour, and the final amplitude of oscillations depends on the characteristics of the external disturbances. These linear models are particularly appropriate for describing cavities in which feedback has been used for noise suppression, as the oscillations are small and nonlinearities are less likely to be important. It is shown that increasing the gain too much in such feedback control experiments can lead to a peak-splitting phenomenon, which is explained by the linear models. Fundamental performance limits indicate that peak splitting is likely to occur for narrow-bandwidth actuators and controllers

    Challenges to Cabin Humidity Removal Presented by Intermittent Condensing Conditions

    Get PDF
    On-orbit temperature and humidity control (THC) is more easily accomplished when the THC hardware is either consistently dry (i.e., no humidity control is occurring), or consistently wet. The system is especially challenged when intermittent wet/dry conditions occur. The first six years of on-orbit ISS operations have revealed specific concerns within the THC system, specifically in the condensing heat exchanger and the downstream air/water separator. Failed or degraded hardware has been returned to ground and investigated. This paper presents the investigation findings, and the recommended hardware and procedural revisions to prevent and recover from the effects of intermittent condensing conditions

    Intra- and interspecific variation for summer precipitation use in pinyon-juniper woodlands

    Get PDF
    Journal ArticleIn the arid southwest of North America, winter precipitation penetrates to deep soil layers, whereas summer"monsoon" precipitation generally wets only surface layers. Use of these spatially separated water sources was determined for three dominant tree species of the pinyon-juniper ecosystem at six sites along a gradient of increasing summer precipitation in Utah and Arizona

    Aspergillus fumigatus enhances elastase production in pseudomonas aeruginosaco-cultures

    Get PDF
    In the cystic fibrosis (CF) lung the presence of bacteria and fungi in the airways promotes an inflammatory response causing progressive lung damage, ultimately leading to high rates of morbidity and mortality. We hypothesized that polymicrobial interactions play an important role in promoting airway pathogenesis. We therefore examined the interplay between the most commonly isolated bacterial CF pathogen, Pseudomonas aeruginosa, and the most prevalent filamentous fungi, Aspergillus fumigatus, to test this. Co-culture experiments showed that in the presence of A. fumigatus the production of P. aeruginosa elastase was enhanced. This was confirmed by the presence of zones of clearance on Elastin-Congo Red (ECR) agar, which was identified as elastase by mass spectrometry. When P. aeruginosa were grown in a co-culture model with mature A. fumigatus biofilms, 60% of isolates produced significantly more elastase in the presence of the filamentous fungi than in its absence (P < .05). The expression of lasB also increased when P. aeruginosa isolates PA01 and PA14 were grown in co-culture with A. fumigatus. Supernatants from co-culture experiments were also significantly toxic to a human lung epithelial cell line (19–38% cell cytotoxicity) in comparison to supernatants from P. aeruginosa only cultures (P < .0001). Here we report that P. aeruginosa cytotoxic elastase is enhanced in the presence of the filamentous fungi A. fumigatus, suggesting that this may have a role to play in the damaging pathology associated with the lung tissue in this disease. This indicates that patients who have a co-colonisation with these two organisms may have a poorer prognosis

    Carbon isotope discrimination and water relations of oak hybrid populations in southwestern Utah

    Get PDF
    Journal ArticleThe evergreen oak Quercus turbinella and the deciduous Q. gambelii form natural hybrids in southwestern Utah and northern Arizona. Hybrid individuals also are found in northern Utah in a region where only Q. gambelii currently exists, indicating that Q. turbinella has recently retreated southward. Our objectives were to (1) examine the ecophysiology of parental taxa and hybrids under natural conditions in southeastern Utah, and (2) investigate the level of integration between leaf carbon isotope discrimination (a synthetic gas exchange trait) and structural and chemical traits of leaves in morphologically variable hybrid populations. Leaf length, width, mass-to-area ratio (LMA, g m-2), and nitrogen concentration (N, g g-1) within 2 hybrid populations near New Harmony, Utah, were highly intercorrelated. Variation within the hybrid populations spanned mean values for these traits observed in parental taxa from adjacent "pure" populations of each species. Carbon isotope discrimination (Δ), an integrated measure of the ratio of intercellular to ambient CO2 concentration, ranged from 16.1‰ to 19.6‰ within the 2 hybrid populations and was positively correlated with leaf nitrogen concentration and negatively correlated with LMA; individuals in hybrid populations with leaves resembling Q. gambelii had the highest leaf Δ and N concentrations and lowest LMA compared with leaves from plants that resembled Q. turbinella. CO2 uptake is limited by stomatal conductance and possibly by mesophyll resistance to a greater extent in Q. turbinella phenotypes than in intermediate or Q. gambelii phenotypes

    Analysis of the 2007/8 Defra Farm Business Survey Energy Module

    Get PDF
    Key points This study has delivered an invaluable baseline estimate of energy use and greenhouse gas (GHG) emissions on commercial farms in England. Energy use and GHG emissions associated with particular commodities were quantified and results broadly agreed with those derived by Life Cycle Assessment, but with much scatter in the environmental performance of farms.Direct energy use on farms was generally less that indirect (embedded) energy use, except for horticulture, which is dominated by heating fuel use. In contrast, most GHG emissions are incurred on farms, rather than as embedded emissions.Scatter in both environmental and economic performance underlies the somewhat disappointing finding of no clear positive link between farm financial performance and energy use or GHG emissions. However, the mere existence of these ranges shows that there is scope for improvement in both financial and environmental performance and that there is no apparent barrier for both to be achievable in harmony. The recording of such farm-level energy data is essential for the future, as it should enable improvements to be made in efficiency of energy use. The improved UK agricultural GHG inventory will depend on high quality energy data on agricultural activities. This study will be invaluable in identifying the level of detail needed. Future data requirements include: contractor work rates and fuel use per unit area and per unit time, fertiliser and pesticide use by brand name, enhanced output data, especially animal live weights, and horticultural produce recorded by weight rather than by value
    corecore