240 research outputs found

    Linial arrangements and local binary search trees

    Full text link
    We study the set of NBC sets (no broken circuit sets) of the Linial arrangement and deduce a constructive bijection to the set of local binary search trees. We then generalize this construction to two families of Linial type arrangements for which the bijections are with some kk-ary labelled trees that we introduce for this purpose.Comment: 13 pages, 1 figure. arXiv admin note: text overlap with arXiv:1403.257

    Lattice Points in Orthotopes and a Huge Polynomial Tutte Invariant of Weighted Gain Graphs

    Full text link
    A gain graph is a graph whose edges are orientably labelled from a group. A weighted gain graph is a gain graph with vertex weights from an abelian semigroup, where the gain group is lattice ordered and acts on the weight semigroup. For weighted gain graphs we establish basic properties and we present general dichromatic and forest-expansion polynomials that are Tutte invariants (they satisfy Tutte's deletion-contraction and multiplicative identities). Our dichromatic polynomial includes the classical graph one by Tutte, Zaslavsky's two for gain graphs, Noble and Welsh's for graphs with positive integer weights, and that of rooted integral gain graphs by Forge and Zaslavsky. It is not a universal Tutte invariant of weighted gain graphs; that remains to be found. An evaluation of one example of our polynomial counts proper list colorations of the gain graph from a color set with a gain-group action. When the gain group is Z^d, the lists are order ideals in the integer lattice Z^d, and there are specified upper bounds on the colors, then there is a formula for the number of bounded proper colorations that is a piecewise polynomial function of the upper bounds, of degree nd where n is the order of the graph. This example leads to graph-theoretical formulas for the number of integer lattice points in an orthotope but outside a finite number of affinographic hyperplanes, and for the number of n x d integral matrices that lie between two specified matrices but not in any of certain subspaces defined by simple row equations.Comment: 32 pp. Submitted in 2007, extensive revisions in 2013 (!). V3: Added references, clarified examples. 35 p

    An elementary chromatic reduction for gain graphs and special hyperplane arrangements

    Full text link
    A gain graph is a graph whose edges are labelled invertibly by "gains" from a group. "Switching" is a transformation of gain graphs that generalizes conjugation in a group. A "weak chromatic function" of gain graphs with gains in a fixed group satisfies three laws: deletion-contraction for links with neutral gain, invariance under switching, and nullity on graphs with a neutral loop. The laws lead to the "weak chromatic group" of gain graphs, which is the universal domain for weak chromatic functions. We find expressions, valid in that group, for a gain graph in terms of minors without neutral-gain edges, or with added complete neutral-gain subgraphs, that generalize the expression of an ordinary chromatic polynomial in terms of monomials or falling factorials. These expressions imply relations for chromatic functions of gain graphs. We apply our relations to some special integral gain graphs including those that correspond to the Shi, Linial, and Catalan arrangements, thereby obtaining new evaluations of and new ways to calculate the zero-free chromatic polynomial and the integral and modular chromatic functions of these gain graphs, hence the characteristic polynomials and hypercubical lattice-point counting functions of the arrangements. We also calculate the total chromatic polynomial of any gain graph and especially of the Catalan, Shi, and Linial gain graphs.Comment: 31 page

    Activity from matroids to rooted trees and beyond

    Full text link
    The interior and exterior activities of bases of a matroid are well-known notions that for instance permit one to define the Tutte polynomial. Recently, we have discovered correspondences between the regions of gainic hyperplane arrangements and coloredlabeled rooted trees. Here we define a general activity theory that applies in particular to no-broken circuit (NBC) sets and labeled colored trees. The special case of activity \textsf{0} was our motivating case. As a consequence, in a gainic hyperplane arrangement the number of bounded regions is equal to the number of the corresponding colored labeled rooted trees of activity \textsf{0}.Comment: 7 Figure
    corecore