159 research outputs found
Invariant computations in local cortical networks with balanced excitation and inhibition
[Abstract] Cortical computations critically involve local neuronal circuits. The computations are often invariant across a cortical area yet are carried out by networks that can vary widely within an area according to its functional architecture. Here we demonstrate a mechanism by which orientation selectivity is computed invariantly in cat primary visual cortex across an orientation preference map that provides a wide diversity of local circuits. Visually evoked excitatory and inhibitory synaptic conductances are balanced exquisitely in cortical neurons and thus keep the spike response sharply tuned at all map locations. This functional balance derives from spatially isotropic local connectivity of both excitatory and inhibitory cells. Modeling results demonstrate that such covariation is a signature of recurrent rather than purely feed-forward processing and that the observed isotropic local circuit is sufficient to generate invariant spike tuning
Mechanisms underlying a thalamocortical transformation during active tactile sensation
During active somatosensation, neural signals expected from movement of the sensors are suppressed in the cortex, whereas information related to touch is enhanced. This tactile suppression underlies low-noise encoding of relevant tactile features and the brainβs ability to make fine tactile discriminations. Layer (L) 4 excitatory neurons in the barrel cortex, the major target of the somatosensory thalamus (VPM), respond to touch, but have low spike rates and low sensitivity to the movement of whiskers. Most neurons in VPM respond to touch and also show an increase in spike rate with whisker movement. Therefore, signals related to self-movement are suppressed in L4. Fast-spiking (FS) interneurons in L4 show similar dynamics to VPM neurons. Stimulation of halorhodopsin in FS interneurons causes a reduction in FS neuron activity and an increase in L4 excitatory neuron activity. This decrease of activity of L4 FS neurons contradicts the "paradoxical effect" predicted in networks stabilized by inhibition and in strongly-coupled networks. To explain these observations, we constructed a model of the L4 circuit, with connectivity constrained by in vitro measurements. The model explores the various synaptic conductance strengths for which L4 FS neurons actively suppress baseline and movement-related activity in layer 4 excitatory neurons. Feedforward inhibition, in concert with recurrent intracortical circuitry, produces tactile suppression. Synaptic delays in feedforward inhibition allow transmission of temporally brief volleys of activity associated with touch. Our model provides a mechanistic explanation of a behavior-related computation implemented by the thalamocortical circuit
Synchronous chaos and broad band gamma rhythm in a minimal multi-layer model of primary visual cortex
Visually induced neuronal activity in V1 displays a marked gamma-band
component which is modulated by stimulus properties. It has been argued that
synchronized oscillations contribute to these gamma-band activity [...
however,] even when oscillations are observed, they undergo temporal
decorrelation over very few cycles. This is not easily accounted for in
previous network modeling of gamma oscillations. We argue here that
interactions between cortical layers can be responsible for this fast
decorrelation. We study a model of a V1 hypercolumn, embedding a simplified
description of the multi-layered structure of the cortex. When the stimulus
contrast is low, the induced activity is only weakly synchronous and the
network resonates transiently without developing collective oscillations. When
the contrast is high, on the other hand, the induced activity undergoes
synchronous oscillations with an irregular spatiotemporal structure expressing
a synchronous chaotic state. As a consequence the population activity undergoes
fast temporal decorrelation, with concomitant rapid damping of the oscillations
in LFPs autocorrelograms and peak broadening in LFPs power spectra. [...]
Finally, we argue that the mechanism underlying the emergence of synchronous
chaos in our model is in fact very general. It stems from the fact that gamma
oscillations induced by local delayed inhibition tend to develop chaos when
coupled by sufficiently strong excitation.Comment: 49 pages, 11 figures, 7 table
- β¦