435 research outputs found

    Statistical inference in the multinomial multiperiod probit model

    Get PDF
    Statistical inference in multinomial multiperiod probit models has been hindered in the past by the high dimensional numerical integrations necessary to form the likelihood functions, posterior distributions, or moment conditions in these models. We describe three alternative approaches to inference that circumvent the integration problem: Bayesian inference using Gibbs sampling and data augmentation to compute posterior moments, simulated maximum likelihood (SML) estimation using the GHK recursive probability simulator, and method of simulated moment (MSM) estimation using the GHK simulator. We perform a set of Monte-Carlo experiments to compare the performance of these approaches. Although all the methods perform reasonably well, some important differences emerge. The root mean square errors (RMSEs) of the SML parameter estimates around the data generating values exceed those of the MSM estimates by 21 percent on average, while the RMSEs of the MSM estimates exceed those of the posterior parameter means obtained via agreement via Gibbs sampling by 18 percent on average. While MSM produces a good agreement between empirical RMSEs and asymptotic standard errors, the RMSEs of the SML estimates exceed the asymptotic standard errors by 28 percent on average. Also, the SML estimates of serial correlation parameters exhibit significant downward bias.Econometric models

    Generic Continuous Spectrum for Ergodic Schr"odinger Operators

    Full text link
    We consider discrete Schr"odinger operators on the line with potentials generated by a minimal homeomorphism on a compact metric space and a continuous sampling function. We introduce the concepts of topological and metric repetition property. Assuming that the underlying dynamical system satisfies one of these repetition properties, we show using Gordon's Lemma that for a generic continuous sampling function, the associated Schr"odinger operators have no eigenvalues in a topological or metric sense, respectively. We present a number of applications, particularly to shifts and skew-shifts on the torus.Comment: 14 page

    Gene expression profiling of Naïve sheep genetically resistant and susceptible to gastrointestinal nematodes

    Get PDF
    BACKGROUND: Gastrointestinal nematodes constitute a major cause of morbidity and mortality in grazing ruminants. Individual animals or breeds, however, are known to differ in their resistance to infection. Gene expression profiling allows us to examine large numbers of transcripts simultaneously in order to identify those transcripts that contribute to an animal's susceptibility or resistance. RESULTS: With the goal of identifying genes with a differential pattern of expression between sheep genetically resistant and susceptible to gastrointestinal nematodes, a 20,000 spot ovine cDNA microarray was constructed. This array was used to interrogate the expression of 9,238 known genes in duodenum tissue of four resistant and four susceptible female lambs. Naïve animals were used in order to look at genes that were differentially expressed in the absence of infection with gastrointestinal nematodes. Forty one unique known genes were identified that were differentially expressed between the resistant and susceptible animals. Northern blotting of a selection of the genes confirmed differential expression. The differentially expressed genes had a variety of functions, although many genes relating to the stress response and response to stimulus were more highly expressed in the susceptible animals. CONCLUSION: We have constructed the first reported ovine microarray and used this array to examine gene expression in lambs genetically resistant and susceptible to gastrointestinal nematode infection. This study indicates that susceptible animals appear to be generating a hyper-sensitive immune response to non-nematode challenges. The gastrointestinal tract of susceptible animals is therefore under stress and compromised even in the absence of gastrointestinal nematodes. These factors may contribute to the genetic susceptibility of these animals

    Detection of a glitch in the pulsar J1709-4429

    Get PDF
    We report the detection of a glitch event in the pulsar J1709-4429 (also known as B1706-44) during regular monitoring observations with the Molonglo Observatory Synthesis Telescope (UTMOST). The glitch was found during timing operations, in which we regularly observe over 400 pulsars with up to daily cadence, while commensally searching for Rotating Radio Transients, pulsars, and FRBs. With a fractional size of Δν/ν52.4×109\Delta\nu/\nu \approx 52.4 \times10^{-9}, the glitch reported here is by far the smallest known for this pulsar, attesting to the efficacy of glitch searches with high cadence using UTMOST.Comment: 3 pages, 1 figur

    Bioimpedance indices of fluid overload and cardiorenal outcomes in heart failure and chronic kidney disease: a systematic review

    Get PDF
    Background: Bioimpedance-based estimates of fluid overload have been widely studied and systematically reviewed in populations of those undergoing dialysis, but data from populations with heart failure or nondialysis chronic kidney disease (CKD) have not. Methods and Results: We conducted a systematic review of studies using whole-body bioimpedance from populations with heart failure and nondialysis CKD that reported associations with mortality, cardiovascular outcomes and/or CKD progression. We searched MEDLINE, Embase databases and the Cochrane CENTRAL registry from inception to March 14, 2022. We identified 31 eligible studies: 20 heart failure and 11 CKD cohorts, with 2 studies including over 1000 participants. A wide range of various bioimpedance methods were used across the studies (heart failure: 8 parameters; CKD: 6). Studies generally reported positive associations, but between-study differences in bioimpedance methods, fluid overload exposure definitions and modeling approaches precluded meta-analysis. The largest identified study was in nondialysis CKD (Chronic Renal Insufficiency Cohort, 3751 participants), which reported adjusted hazard ratios (95% confidence intervals) for phase angle < 5.59 vs ≥ 6.4 of 2.02 (1.67–2.43) for all-cause mortality; 1.80 (1.46–2.23) for heart failure events; and 1.78 (1.56–2.04) for CKD progression. Conclusions: Bioimpedance indices of fluid overload are associated with risk of important cardiorenal outcomes in heart failure and CKD. Facilitation of more widespread use of bioimpedance requires consensus on the optimum device, standardized analytical methods and larger studies, including more detailed characterization of cardiac and renal phenotypes

    A Clinician\u27s Guide to Next Generation Imaging in Patients With Advanced Prostate Cancer (RADAR III).

    Get PDF
    PURPOSE: The advanced prostate cancer therapeutic landscape has changed dramatically in the last several years, resulting in improved overall survival of patients with castration naïve and castration resistant disease. The evolution and development of novel next generation imaging techniques will affect diagnostic and therapeutic decision making. Clinicians must navigate when and which next generation imaging techniques to use and how to adjust treatment strategies based on the results, often in the absence of correlative therapeutic data. Therefore, guidance is needed based on best available information and current clinical experience. MATERIALS AND METHODS: The RADAR (Radiographic Assessments for Detection of Advanced Recurrence) III Group convened to offer guidance on the use of next generation imaging to stage prostate cancer based on available data and clinical experience. The group also discussed the potential impact of next generation imaging on treatment options based on earlier detection of disease. RESULTS: The group unanimously agreed that progression to metastatic disease is a seminal event for patient treatment. Next generation imaging techniques are able to detect previously undetectable metastases, which could redefine the phases of prostate cancer progression. Thus, earlier systemic or locally directed treatment may positively alter patient outcomes. CONCLUSIONS: The RADAR III Group recommends next generation imaging techniques in select patients in whom disease progression is suspected based on laboratory (biomarker) values, comorbidities and symptoms. Currently 18F-fluciclovine and 68Ga prostate specific membrane antigen positron emission tomography/computerized tomography are the next generation imaging agents with a favorable combination of availability, specificity and sensitivity. There is ongoing research of additional next generation imaging technologies, which may offer improved diagnostic accuracy and therapeutic options. As next generation imaging techniques evolve and presumably result in improved global accessibility, clinician ability to detect micrometastases may be enhanced for decision making and patient outcomes

    Considering racial and ethnic preferences in communication and interactions among the patient, family member, and physician following diagnosis of localized prostate cancer: study of a US population

    Get PDF
    Prostate cancer is the most commonly diagnosed cancer among American men. The multiple treatment options for localized prostate cancer and potential side effects can complicate the decision-making process. We describe the level of engagement and communication among the patient, family member, and physician (the decision-making “triad”) in the decision process prior to treatment. Using the Family and Cancer Therapy Selection (FACTS) study baseline survey data, we note racial/ethnic variations in communication among the triad. Sensitivity to and awareness of decision-making styles of both the patient and their family member (or caregiver) may enable clinicians to positively influence communication exchanges about important clinical decisions

    Tamm Review: Management of mixed-severity fire regime forests in Oregon, Washington, and Northern California

    Get PDF
    Increasingly, objectives for forests with moderate- or mixed-severity fire regimes are to restore successionally diverse landscapes that are resistant and resilient to current and future stressors. Maintaining native species and characteristic processes requires this successional diversity, but methods to achieve it are poorly explained in the literature. In the Inland Pacific US, large, old, early seral trees were a key historical feature of many young and old forest successional patches, especially where fires frequently occurred. Large, old trees are naturally fire-tolerant, but today are often threatened by dense understory cohorts that create fuel ladders that alter likely post-fire successional pathways. Reducing these understories can contribute to resistance by creating conditions where canopy trees will survive disturbances and climatic stressors; these survivors are important seed sources, soil protectors, and critical habitat elements. Historical timber harvesting has skewed tree size and age class distributions, created hard edges, and altered native patch sizes. Manipulating these altered forests to promote development of larger patches of older, larger, and more widely-spaced trees with diverse understories will increase landscape resistance to severe fires, and enhance wildlife habitat for underrepresented conditions. Closed-canopy, multi-layered patches that develop in hot, dry summer environments are vulnerable to droughts, and they increase landscape vulnerability to insect outbreaks and severe wildfires. These same patches provide habitat for species such as the northern spotted owl, which has benefited from increased habitat area. Regional and local planning will be critical for gauging risks, evaluating trade-offs, and restoring dynamics that can support these and other species. The goal will be to manage for heterogeneous landscapes that include variably-sized patches of (1) young, middle-aged, and old, closed canopy forests growing in upper montane, northerly aspect, and valley bottom settings, (2) a similar diversity of open-canopy, fire-tolerant patches growing on ridgetops, southerly aspects, and lower montane settings, and (3) significant montane chaparral and grassland areas. Tools to achieve this goal include managed wildfire, prescribed burning, and variable density thinning at small to large scales. Specifics on ‘‘how much and where?” will vary according to physiographic, topographic and historical templates, and regulatory requirements, and be determined by means of a socio-ecological process
    corecore