4,189 research outputs found

    Confocal analysis of nervous system architecture in direct-developing juveniles of Neanthes arenaceodentata (Annelida, Nereididae)

    Get PDF
    Background: Members of Family Nereididae have complex neural morphology exemplary of errant polychaetes and are leading research models in the investigation of annelid nervous systems. However, few studies focus on the development of their nervous system morphology. Such data are particularly relevant today, as nereidids are the subjects of a growing body of "evo-devo" work concerning bilaterian nervous systems, and detailed knowledge of their developing neuroanatomy facilitates the interpretation of gene expression analyses. In addition, new data are needed to resolve discrepancies between classic studies of nereidid neuroanatomy. We present a neuroanatomical overview based on acetylated α-tubulin labeling and confocal microscopy for post-embryonic stages of Neanthes arenaceodentata, a direct-developing nereidid. Results: At hatching (2-3 chaetigers), the nervous system has developed much of the complexity of the adult (large brain, circumesophageal connectives, nerve cords, segmental nerves), and the stomatogastric nervous system is partially formed. By the 5-chaetiger stage, the cephalic appendages and anal cirri are well innervated and have clear connections to the central nervous system. Within one week of hatching (9-chaetigers), cephalic sensory structures (e.g., nuchal organs, Langdon's organs) and brain substructures (e.g., corpora pedunculata, stomatogastric ganglia) are clearly differentiated. Additionally, the segmental-nerve architecture (including interconnections) matches descriptions of other, adult nereidids, and the pharynx has developed longitudinal nerves, nerve rings, and ganglia. All central roots of the stomatogastric nervous system are distinguishable in 12-chaetiger juveniles. Evidence was also found for two previously undescribed peripheral nerve interconnections and aspects of parapodial muscle innervation. Conclusions: N. arenaceodentata has apparently lost all essential trochophore characteristics typical of nereidids. Relative to the polychaete Capitella, brain separation from a distinct epidermis occurs later in N. arenaceodentata, indicating different mechanisms of prostomial development. Our observations of parapodial innervation and the absence of lateral nerves in N. arenaceodentata are similar to a 19th century study of Alitta virens (formerly Nereis/Neanthes virens) but contrast with a more recent study that describes a single parapodial nerve pattern and lateral nerve presence in A. virens and two other genera. The latter study apparently does not account for among-nereidid variation in these major neural features

    Monetary benefits of preventing childhood lead poisoning with lead-safe window replacement

    Get PDF
    Previous estimates of childhood lead poisoning prevention benefits have quantified the present value of some health benefits, but not the costs of lead paint hazard control or the benefits associated with housing and energy markets. Because older housing with lead paint constitutes the main exposure source today in the U.S., we quantify health benefits, costs, market value benefits, energy savings, and net economic benefits of lead-safe window replacement (which includes paint stabilization and other measures). The benefit per resident child from improved lifetime earnings alone is 21,195inpre1940housingand21,195 in pre-1940 housing and 8,685 in 1940-59 housing (in 2005 dollars). Annual energy savings are 130to130 to 486 per housing unit, with or without young resident children, with an associated increase in housing market value of 5,900to5,900 to 14,300 per housing unit, depending on home size and number of windows replaced. Net benefits are 4,490to4,490 to 5,629 for each housing unit built before 1940, and 491to491 to 1,629 for each unit built from 1940-1959, depending on home size and number of windows replaced. Lead-safe window replacement in all pre-1960 U.S. housing would yield net benefits of at least $67 billion, which does not include many other benefits. These other benefits, which are shown in this paper, include avoided Attention Deficit Hyperactivity Disorder, other medical costs of childhood lead exposure, avoided special education, and reduced crime and juvenile delinquency in later life. In addition, such a window replacement effort would reduce peak demand for electricity, carbon emissions from power plants, and associated long-term costs of climate change.Lead Poisoning, IQ, Energy Efficiency, Cost Benefit Analysis, Housing, Climate Change

    Pure phase-encoded MRI and classification of solids

    Get PDF
    Here, the authors combine a pure phase-encoded magnetic resonance imaging (MRI) method with a new tissue-classification technique to make geometric models of a human tooth. They demonstrate the feasibility of three-dimensional imaging of solids using a conventional 11.7-T NMR spectrometer. In solid-state imaging, confounding line-broadening effects are typically eliminated using coherent averaging methods. Instead, the authors circumvent them by detecting the proton signal at a fixed phase-encode time following the radio-frequency excitation. By a judicious choice of the phase-encode time in the MRI protocol, the authors differentiate enamel and dentine sufficiently to successfully apply a new classification algorithm. This tissue-classification algorithm identifies the distribution of different material types, such as enamel and dentine, in volumetric data. In this algorithm, the authors treat a voxel as a volume, not as a single point, and assume that each voxel may contain more than one material. They use the distribution of MR image intensities within each voxel-sized volume to estimate the relative proportion of each material using a probabilistic approach. This combined approach, involving MRI and data classification, is directly applicable to bone imaging and hard-tissue contrast-based modeling of biological solids

    Visualizing Diffusion Tensor Images of the Mouse Spinal Cord

    Get PDF
    Within biological systems water molecules undergo continuous stochastic Brownian motion. The rate of this diffusion can give clues to the structure of underlying tissues. In some tissues the rate is anisotropic - faster in some directions than others. Diffusion-rate images are second-order tensor fields and can be calculated from diffusion-weighted magnetic resonance images. A 2D diffusion tensor image (DTI) and an associated anatomical scalar field, created during the tensor calculation, define seven dependent values at each spatial location. Understanding the interrelationships among these values is necessary to understand the data. We present two new methods for visually representing DTIs. The first method displays an array of ellipsoids where the shape of each ellipsoid represents one tensor value. The novel aspect of this representation is that the ellipsoids are all normalized to approximately the same size so that they can be displayed in context. The second method uses concepts from oil painting to represent the seven-valued data with multiple layers of varying brush strokes. Both methods successfully display most or all of the information in DTIs and provide exploratory methods for understanding them. The ellipsoid method has a simpler interpretation and explanation than the painting-motivated method; the painting-motivated method displays more of the information and is easier to read quantitatively. We demonstrate the methods on images of the mouse spinal cord. The visualizations show significant differences between spinal cords from mice suffering from Experimental Allergic Encephalomyelitis (EAE) and spinal cords from wild-type mice. The differences are consistent with pathology differences shown histologically and suggest that our new non-invasive imaging methodology and visualization of the results could have early diagnostic value for neurodegenerative diseases

    Canopy Flow Analysis Reveals the Advantage of Size in the Oldest Communities of Multicellular Eukaryotes

    Get PDF
    SummaryAt Mistaken Point, Newfoundland, Canada, rangeomorph “fronds” dominate the earliest (579–565 million years ago) fossil communities of large (0.1 to 2 m height) multicellular benthic eukaryotes. They lived in low-flow environments, fueled by uptake [1–3] of dissolved reactants (osmotrophy). However, prokaryotes are effective osmotrophs, and the advantage of taller eukaryotic osmotrophs in this deep-water community context has not been addressed. We reconstructed flow-velocity profiles and vertical mixing using canopy flow models appropriate to the densities of the observed communities. Further modeling of processes at organismal surfaces documents increasing uptake with height in the community as a function of thinning of the diffusive boundary layer with increased velocity. The velocity profile, produced by canopy flow in the community, generates this advantage of upward growth. Alternative models of upward growth advantage based on redox/resource gradients fail, given the efficiency of vertical mixing. In benthic communities of osmotrophs of sufficient density, access to flow in low-flow settings provides an advantage to taller architecture, providing a selectional driver for communities of tall eukaryotes in contexts where phototropism cannot contribute to upward growth. These Ediacaran deep-sea fossils were preserved during the increasing oxygenation prior to the Cambrian radiation of animals and likely represent an important phase in the ecological and evolutionary transition to more complex eukaryotic forms.Video Abstrac

    Height after side: Goalkeepers detect the vertical direction of association-football penalty kicks from the ball trajectory

    Full text link
    The present research analyzes the relation between the height of penalty kicks in association football and (a) the probability that goalkeepers stop the ball, (b) the kinematics of the kicker, and (c) the movements of the goalkeeper. We re-analyzed movement registration data that were collected in an experiment (with professional and semi-professional players) that focused on the horizontal direction of the penalties (Lopes et al., 2014). We also digitized and analyzed regular videos of the goalkeepers that were recorded by Lopes et al. (2014) but not analyzed. The present research complements the current understanding of the penalty kick with three main observations. First, goalkeepers save penalties at middle heights more often than low and high penalties. Second, the height of penalties is predicted less clearly than their horizontal direction from the kinematics of penalty takers. Third, goalkeepers tend to initiate the horizontal component of the saving action before the penalty taker contacts the ball, but they initiate the vertical component of the action about 245 ms after the contact. Taken together, these results support the view that goalkeepers make the left-right decision at least partly focusing on the kinematics of the kicker, and that they dynamically decide the vertical aspects of the movement later, focusing on the ball trajectory.This research was supported by a grant from the Portuguese Foundation for Science and Technology (SFRH/BD/60520/2009), awarded to JL, and a grant from the Spanish Ministry of Economy and Competitiveness (PSI2013-43742). DA was partly supported by the Fundação para a Ciência e Tecnologia, under Grant UIDB/00447/2020 to CIPER – Centro Interdisciplinar para o Estudo da Performance Humana (unit 447)

    Windows of opportunity: lead poisoning prevention, housing affordability, and energy conservation

    Get PDF
    We used housing demolition and window replacement rates to forecast prevalence trends for childhood lead poisoning and lead paint hazards from 1990 to 2010 for the President’s Task Force on Environmental Health Risks and Safety Risks to Children. The mid-point of that forecast has now been validated by national blood lead data and the 1998–2000 National Survey of Lead and Allergens in Housing. The validation of the task force model and new analysis of these survey data indicate that window replacement explains a large part of the substantial reduction in lead poisoning that occurred from 1990 to 2000. A public-private effort to increase window replacement rates could help eliminate childhood lead poisoning by 2010. This effort would also improve home energy efficiency and affordability, in addition to reducing air pollution from power plants, and a broader initiative could reduce other housing-related health risks as well
    corecore