126 research outputs found

    A String Bit Hamiltonian Approach to Two-Dimensional Quantum Gravity

    Get PDF
    Motivated by the formalism of string bit models, or quantum matrix models, we study a class of simple Hamiltonian models of quantum gravity type in two space-time dimensions. These string bit models are special cases of a more abstract class of models defined in terms of the sl(2) subalgebra of the Virasoro algebra. They turn out to be solvable and their scaling limit coincides in special cases with known transfer matrix models of two-dimensional quantum gravity.Comment: 24 pages, no figure; LaTeX2

    Vaquita Face Extinction from Bycatch. Comment on Manjarrez-Bringas, N. et al., Lessons for Sustainable Development: Marine Mammal Conservation Policies and Its Social and Economic Effects.

    Get PDF
    We are among the scientists who have documented the environmental and ecological changes to the Upper Gulf of California following the reduction in the Colorado River’s flow. We object to any suggestion that our research supports Manjarrez-Bringas et al.’s conclusion that the decline in the Colorado River’s flow is the reason for the decline in the population of the endangered vaquita porpoise (Phocoena sinus). Manjarrez-Bringas et al.’s conclusions are incongruent with their own data, their logic is untenable, their analyses fail to consider current illegal fishing practices, and their recommendations are unjustified and misdirected. Vaquita face extinction because of bycatch, not because of the lack of river flow

    Comment on Rojas-Bracho and Colleagues (2019): Unsubstantiated Claims Can Lead to Tragic Conservation Outcomes

    Get PDF
    The vaquita’s decline is a tragic story indeed. However, the lack of action to prevent the extinction of this species is not due to unsubstantiated claims and scientific uncertainty

    Genetic Architecture of a Reinforced, Postmating, Reproductive Isolation Barrier between Neurospora Species Indicates Evolution via Natural Selection

    Get PDF
    A role for natural selection in reinforcing premating barriers is recognized, but selection for reinforcement of postmating barriers remains controversial. Organisms lacking evolvable premating barriers can theoretically reinforce postmating isolation, but only under restrictive conditions: parental investment in hybrid progeny must inhibit subsequent reproduction, and selected postmating barriers must restore parents' capacity to reproduce successfully. We show that reinforced postmating isolation markedly increases maternal fitness in the fungus Neurospora crassa, and we detect the evolutionary genetic signature of natural selection by quantitative trait locus (QTL) analysis of the reinforced barrier. Hybrid progeny of N. crassa and N. intermedia are highly inviable. Fertilization by local N. intermedia results in early abortion of hybrid fruitbodies, and we show that abortion is adaptive because only aborted maternal colonies remain fully receptive to future reproduction. In the first QTL analysis of postmating reinforcement in microbial eukaryotes, we identify 11 loci for abortive hybrid fruitbody development, including three major QTLs that together explain 30% of trait variance. One of the major QTLs and six QTLs of lesser effect are found on the mating-type determining chromosome of Neurospora. Several reinforcement QTLs are flanked by genetic markers showing either segregation distortion or non-random associations with alleles at other loci in a cross between N. crassa of different clades, suggesting that the loci also are associated with local effects on same-species reproduction. Statistical analysis of the allelic effects distribution for abortive hybrid fruitbody development indicates its evolution occurred under positive selection. Our results strongly support a role for natural selection in the evolution of reinforced postmating isolation in N. crassa

    Lakes of the Huron basin: their record of runoff from the laurentide ice sheet

    Full text link
    The 189,000 km2 Huron basin is central in the catchment area of the present Laurentian Great Lakes that now drain via the St. Lawrence River to the North Atlantic Ocean. During deglaciation from 21-7.5 ka BP, and owing to the interactions of ice margin positions, crustal rebound and regional topography, this basin was much more widely connected hydrologically, draining by various routes to the Gulf of Mexico and Atlantic Ocean, and receiving overflows from lakes impounded north and west of the Great Lakes-Hudson Bay drainage divide.Early ice-marginal lakes formed by impoundment between the Laurentide Ice Sheet and the southern margin of the basin during recessions to interstadial positions at 15.5 and 13.2 ka BP. In each of these recessions, lake drainage was initially southward to the Mississippi River and Gulf of Mexico. In the first recession, drainage subsequently switched eastward along the ice margin to the North Atlantic Ocean. In the second recession, drainage continued southward through the Michigan basin, and later, eastward via the Ontario basin and Mohawk River valley to the North Atlantic Ocean. During the final retreat of ice in the Huron basin from 13 to 10 ka BP, proglacial lake drainage switched twice from the Michigan basin and the Mississippi River system to the North Atlantic via the Ontario basin and Mohawk River valley, finally diverting to the Champlain Sea in the St. Lawrence River valley at about 11.6 ka BP.New seismo- and litho-stratigraphic information with ostracode data from the offshore lacustrine sediments were integrated with the traditional data of shorelines, uplift histories of outlets, and radio-carbon-dated shallow-water evidence of transgressions and regressions to reconstruct the water level history and paleolimnological record for the northern Huron basin for the 11-7 ka BP period. Negative excursions in the [delta]18O isotopic composition of ostracodes and bivalves in southern Lake Michigan, southwestern Lake Huron and eastern Lake Erie indicate an influx of water from ice-marginal Lake Agassiz in central North America about 11 ka BP. A major decline in water levels of the Huron basin after 10.5 ka BP followed the high-level Main Lake Algonquin phase as ice receded and drainage was established through the North Bay area to Ottawa River valley. During the subsequent Mattawa-Stanley phase, the lake level history was dominated by fluctuations of tens of meters. Highstands of the earliest oscillations, whose origin is not clear, might be related to some of the well known Post Algonquin shorelines. After 9.6 ka BP, it is suggested that large inflows from Lake Agassiz and hydraulic damming in downstream outlets were the likely cause of the Lake Mattawa highstands. A lowstand at 9.3-9.1 ka BP occurred when these inflows were diverted, or impeded by an ice advance in the Nipigon basin area, while undiluted meltwater continued to enter the Huron basin. Assemblages and isotopic composition of the ostracode fauna indicate very dilute meltwater during the lowstands as late as 7.5 ka BP, and precipitation runoff with comparatively higher dissolved solids during the highstands. We speculate that the water composition of the Lake Mattawa highstands was dominated by the Agassiz inflows; by that time, much of Lake Agassiz was remote from ice-marginal environments, and the inflows were drawn from surface water of the southern sector of the lake, which was largely supplied by runoff and dissolved solids from the exposed land area of western Canada. Major inflows apparently ended about 8 ka BP, but northern proglacial lakes apparently continued as meltwater persisted in the Huron basin until about 7.5 ka BP. The cessation of major inflows initiated the final lowstand in the Huron basin and the present hydrological regime of local runoff.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/31942/1/0000895.pd

    Ecological consequences of early Late Pleistocene megadroughts in tropical Africa

    Get PDF
    Extremely arid conditions in tropical Africa occurred in several discrete episodes between 135 and 90 ka, as demonstrated by lake core and seismic records from multiple basins [Scholz CA, Johnson TC, Cohen AS, King JW, Peck J, Overpeck JT, Talbot MR, Brown ET, Kalindekafe L, Amoako PYO, et al. (2007) Proc Natl Acad Sci USA 104:16416–16421]. This resulted in extraordinarily low lake levels, even in Africa\u27s deepest lakes. On the basis of well dated paleoecological records from Lake Malawi, which reflect both local and regional conditions, we show that this aridity had severe consequences for terrestrial and aquatic ecosystems. During the most arid phase, there was extremely low pollen production and limited charred-particle deposition, indicating insufficient vegetation to maintain substantial fires, and the Lake Malawi watershed experienced cool, semidesert conditions (\u3c400 mm/yr precipitation). Fossil and sedimentological data show that Lake Malawi itself, currently 706 m deep, was reduced to an ≈125 m deep saline, alkaline, well mixed lake. This episode of aridity was far more extreme than any experienced in the Afrotropics during the Last Glacial Maximum (≈35–15 ka). Aridity diminished after 95 ka, lake levels rose erratically, and salinity/alkalinity declined, reaching near-modern conditions after 60 ka. This record of lake levels and changing limnological conditions provides a framework for interpreting the evolution of the Lake Malawi fish and invertebrate species flocks. Moreover, this record, coupled with other regional records of early Late Pleistocene aridity, places new constraints on models of Afrotropical biogeographic refugia and early modern human population expansion into and out of tropical Africa
    • …
    corecore