20,519 research outputs found

    Correctness of an STM Haskell implementation

    Get PDF
    A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics

    Correlation Between Student Collaboration Network Centrality and Academic Performance

    Full text link
    We compute nodal centrality measures on the collaboration networks of students enrolled in three upper-division physics courses, usually taken sequentially, at the Colorado School of Mines. These are complex networks in which links between students indicate assistance with homework. The courses included in the study are intermediate Classical Mechanics, introductory Quantum Mechanics, and intermediate Electromagnetism. By correlating these nodal centrality measures with students' scores on homework and exams, we find four centrality measures that correlate significantly with students' homework scores in all three courses: in-strength, out-strength, closeness centrality, and harmonic centrality. These correlations suggest that students who not only collaborate often, but also collaborate significantly with many different people tend to achieve higher grades. Centrality measures between simultaneous collaboration networks (analytical vs. numerical homework collaboration) composed of the same students also correlate with each other, suggesting that students' collaboration strategies remain relatively stable when presented with homework assignments targeting different skills. Additionally, we correlate centrality measures between collaboration networks from different courses and find that the four centrality measures with the strongest relationship to students' homework scores are also the most stable measures across networks involving different courses. Correlations of centrality measures with exam scores were generally smaller than the correlations with homework scores, though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE

    Cosmic shear results from the deep lens survey - I: Joint constraints on omega_m and sigma_8 with a two-dimensional analysis

    Full text link
    We present a cosmic shear study from the Deep Lens Survey (DLS), a deep BVRz multi-band imaging survey of five 4 sq. degree fields with two National Optical Astronomy Observatory (NOAO) 4-meter telescopes at Kitt Peak and Cerro Tololo. For both telescopes, the change of the point-spread-function (PSF) shape across the focal plane is complicated, and the exposure-to-exposure variation of this position-dependent PSF change is significant. We overcome this challenge by modeling the PSF separately for individual exposures and CCDs with principal component analysis (PCA). We find that stacking these PSFs reproduces the final PSF pattern on the mosaic image with high fidelity, and the method successfully separates PSF-induced systematics from gravitational lensing effects. We calibrate our shears and estimate the errors, utilizing an image simulator, which generates sheared ground-based galaxy images from deep Hubble Space Telescope archival data with a realistic atmospheric turbulence model. For cosmological parameter constraints, we marginalize over shear calibration error, photometric redshift uncertainty, and the Hubble constant. We use cosmology-dependent covariances for the Markov Chain Monte Carlo analysis and find that the role of this varying covariance is critical in our parameter estimation. Our current non-tomographic analysis alone constrains the Omega_M-sigma_8 likelihood contour tightly, providing a joint constraint of Omega_M=0.262+-0.051 and sigma_8=0.868+-0.071. We expect that a future DLS weak-lensing tomographic study will further tighten these constraints because explicit treatment of the redshift dependence of cosmic shear more efficiently breaks the Omega_M-sigma_8 degeneracy. Combining the current results with the Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) likelihood data, we obtain Omega_M=0.278+-0.018 and sigma_8=0.815+-0.020.Comment: Accepted to ApJ. Replaced with the accepted versio

    Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography

    Full text link
    We present a tomographic cosmic shear study from the Deep Lens Survey (DLS), which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on depth. Using five tomographic redshift bins, we study their auto- and cross-correlations to constrain cosmological parameters. We use a luminosity-dependent nonlinear model to account for the astrophysical systematics originating from intrinsic alignments of galaxy shapes. We find that the cosmological leverage of the DLS is among the highest among existing >10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011}, H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume flatness for LCDM, we obtain the curvature constraint Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however is not well constrained when WMAP9 is used alone. The dark energy equation of state parameter w is tightly constrained when Baryonic Acoustic Oscillation (BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO joint probe. The addition of supernova constraints further tightens the parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the final Planck results and also the predictions of a LCDM universe.Comment: Accepted for publication in Ap

    The faint-galaxy hosts of gamma-ray bursts

    Full text link
    The observed redshifts and magnitudes of the host galaxies of gamma-ray bursts (GRBs) are compared with the predictions of three basic GRB models, in which the comoving rate density of GRBs is (1) proportional to the cosmic star formation rate density, (2) proportional to the total integrated stellar density and (3) constant. All three models make the assumption that at every epoch the probability of a GRB occuring in a galaxy is proportional to that galaxy's broad-band luminosity. No assumption is made that GRBs are standard candles or even that their luminosity function is narrow. All three rate density models are consistent with the observed GRB host galaxies to date, although model (2) is slightly disfavored relative to the others. Models (1) and (3) make very similar predictions for host galaxy magnitude and redshift distributions; these models will be probably not be distinguished without measurements of host-galaxy star-formation rates. The fraction of host galaxies fainter than 28 mag may constrain the faint end of the galaxy luminosity function at high redshift, or, if the fraction is observed to be low, may suggest that the bursters are expelled from low-luminosity hosts. In all models, the probability of finding a z<0.008 GRB among a sample of 11 GRBs is less than 10^(-4), strongly suggesting that GRB 980425, if associated with supernova 1998bw, represents a distinct class of GRBs.Comment: 7 pages, ApJ in press, revised to incorporate yet more new and revised observational result

    CP Nonconservation in ppˉtbˉXp\bar p\to t\bar b X at the Tevatron

    Full text link
    The reaction ppˉtbˉXp\bar p\to t\bar bX is found to be rather rich in exhibiting several different types of CP asymmetries. The spin of the top quark plays an important role. Asymmetries are related to form factors arising from radiative corrections of the tbWtbW production vertex due to non-standard physics. As illustrations, effects are studied in two Higgs Doublet Models and in Supersymmetric Models; asymmetries up to a few percent may be possible.Comment: 14 pages, 3 figures. Note: replaced due to minor problems that appeared on some postscript previewers. No change in conten

    Features and flaws of a contact interaction treatment of the kaon

    Get PDF
    Elastic and semileptonic transition form factors for the kaon and pion are calculated using the leading-order in a global-symmetry-preserving truncation of the Dyson-Schwinger equations and a momentum-independent form for the associated kernels in the gap and Bethe-Salpeter equations. The computed form factors are compared both with those obtained using the same truncation but an interaction that preserves the one-loop renormalisation-group behaviour of QCD and with data. The comparisons show that: in connection with observables revealed by probes with |Q^2|<~ M^2, where M~0.4GeV is an infrared value of the dressed-quark mass, results obtained using a symmetry-preserving regularisation of the contact-interaction are not realistically distinguishable from those produced by more sophisticated kernels; and available data on kaon form factors do not extend into the domain whereupon one could distinguish between the interactions. The situation is different if one includes the domain Q^2>M^2. Thereupon, a fully consistent treatment of the contact interaction produces form factors that are typically harder than those obtained with QCD renormalisation-group-improved kernels. Amongst other things also described are a Ward identity for the inhomogeneous scalar vertex, similarity between the charge distribution of a dressed-u-quark in the K^+ and that of the dressed-u-quark in the pi^+, and reflections upon the point whereat one might begin to see perturbative behaviour in the pion form factor. Interpolations of the form factors are provided, which should assist in working to chart the interaction between light-quarks by explicating the impact on hadron properties of differing assumptions about the behaviour of the Bethe-Salpeter kernel.Comment: 17 pages, 9 figures, 4 table

    Reactome - a knowledgebase of human biological pathways

    Get PDF
    Pathway curation is a powerful tool for systematically associating gene products with functions. Reactome (www.reactome.org) is a manually curated human pathway knowledgebase describing a wide range of biological processes in a computationally accessible manner. The core unit of the Reactome data model is the Reaction, whose instances form a network of biological interactions through entities that are consumed, produced, or act as catalysts. Entities are distinguished by their molecular identities and cellular locations. Set objects allow grouping of related entities. Curation is based on communication between expert authors and staff curators, facilitated by freely available data entry tools. Manually curated data are subjected to quality control and peer review by a second expert. Reactome data are released quarterly. At release time, electronic orthology inference performed on human data produces reaction predictions in 22 species ranging from mouse to bacteria. Cross-references to a large number of publicly available databases are attached, providing multiple entry points into the database. The Reactome Mart allows query submission and data retrieval from Reactome and across other databases. The SkyPainter tool provides visualization and statistical analysis of user supplied data, e.g. from microarray experiments. Reactome data are freely available in a number of data formats (e.g. BioPax, SBML)

    Spectrum of Neutral Helium in Strong Magnetic Fields

    Get PDF
    We present extensive and accurate calculations for the excited state spectrum of spin-polarized neutral helium in a range of magnetic field strengths up to 101210^{12} G. Of considerable interest to models of magnetic white dwarf stellar atmospheres, we also present results for the dipole strengths of the low lying transitions among these states. Our methods rely on a systematically saturated basis set approach to solving the Hartree--Fock self-consistent field equations, combined with an ``exact'' stochastic method to estimate the residual basis set truncation error and electron correlation effects. We also discuss the applicability of the adiabatic approximation to strongly magnetized multi-electron atoms.Comment: 19 pages, 7 figures, 10 table
    corecore