20,519 research outputs found
Correctness of an STM Haskell implementation
A concurrent implementation of software transactional memory in Concurrent Haskell using a call-by-need functional language with processes and futures is given. The description of the small-step operational semantics is precise and explicit, and employs an early abort of conflicting transactions. A proof of correctness of the implementation is given for a contextual semantics with may- and should-convergence. This implies that our implementation is a correct evaluator for an abstract specification equipped with a big-step semantics
Correlation Between Student Collaboration Network Centrality and Academic Performance
We compute nodal centrality measures on the collaboration networks of
students enrolled in three upper-division physics courses, usually taken
sequentially, at the Colorado School of Mines. These are complex networks in
which links between students indicate assistance with homework. The courses
included in the study are intermediate Classical Mechanics, introductory
Quantum Mechanics, and intermediate Electromagnetism. By correlating these
nodal centrality measures with students' scores on homework and exams, we find
four centrality measures that correlate significantly with students' homework
scores in all three courses: in-strength, out-strength, closeness centrality,
and harmonic centrality. These correlations suggest that students who not only
collaborate often, but also collaborate significantly with many different
people tend to achieve higher grades. Centrality measures between simultaneous
collaboration networks (analytical vs. numerical homework collaboration)
composed of the same students also correlate with each other, suggesting that
students' collaboration strategies remain relatively stable when presented with
homework assignments targeting different skills. Additionally, we correlate
centrality measures between collaboration networks from different courses and
find that the four centrality measures with the strongest relationship to
students' homework scores are also the most stable measures across networks
involving different courses. Correlations of centrality measures with exam
scores were generally smaller than the correlations with homework scores,
though this finding varied across courses.Comment: 10 pages, 4 figures, submitted to Phys. Rev. PE
Cosmic shear results from the deep lens survey - I: Joint constraints on omega_m and sigma_8 with a two-dimensional analysis
We present a cosmic shear study from the Deep Lens Survey (DLS), a deep BVRz
multi-band imaging survey of five 4 sq. degree fields with two National Optical
Astronomy Observatory (NOAO) 4-meter telescopes at Kitt Peak and Cerro Tololo.
For both telescopes, the change of the point-spread-function (PSF) shape across
the focal plane is complicated, and the exposure-to-exposure variation of this
position-dependent PSF change is significant. We overcome this challenge by
modeling the PSF separately for individual exposures and CCDs with principal
component analysis (PCA). We find that stacking these PSFs reproduces the final
PSF pattern on the mosaic image with high fidelity, and the method successfully
separates PSF-induced systematics from gravitational lensing effects. We
calibrate our shears and estimate the errors, utilizing an image simulator,
which generates sheared ground-based galaxy images from deep Hubble Space
Telescope archival data with a realistic atmospheric turbulence model. For
cosmological parameter constraints, we marginalize over shear calibration
error, photometric redshift uncertainty, and the Hubble constant. We use
cosmology-dependent covariances for the Markov Chain Monte Carlo analysis and
find that the role of this varying covariance is critical in our parameter
estimation. Our current non-tomographic analysis alone constrains the
Omega_M-sigma_8 likelihood contour tightly, providing a joint constraint of
Omega_M=0.262+-0.051 and sigma_8=0.868+-0.071. We expect that a future DLS
weak-lensing tomographic study will further tighten these constraints because
explicit treatment of the redshift dependence of cosmic shear more efficiently
breaks the Omega_M-sigma_8 degeneracy. Combining the current results with the
Wilkinson Microwave Anisotropy Probe 7-year (WMAP7) likelihood data, we obtain
Omega_M=0.278+-0.018 and sigma_8=0.815+-0.020.Comment: Accepted to ApJ. Replaced with the accepted versio
Cosmic Shear Results from the Deep Lens Survey - II: Full Cosmological Parameter Constraints from Tomography
We present a tomographic cosmic shear study from the Deep Lens Survey (DLS),
which, providing a limiting magnitude r_{lim}~27 (5 sigma), is designed as a
pre-cursor Large Synoptic Survey Telescope (LSST) survey with an emphasis on
depth. Using five tomographic redshift bins, we study their auto- and
cross-correlations to constrain cosmological parameters. We use a
luminosity-dependent nonlinear model to account for the astrophysical
systematics originating from intrinsic alignments of galaxy shapes. We find
that the cosmological leverage of the DLS is among the highest among existing
>10 sq. deg cosmic shear surveys. Combining the DLS tomography with the 9-year
results of the Wilkinson Microwave Anisotropy Probe (WMAP9) gives
Omega_m=0.293_{-0.014}^{+0.012}, sigma_8=0.833_{-0.018}^{+0.011},
H_0=68.6_{-1.2}^{+1.4} km/s/Mpc, and Omega_b=0.0475+-0.0012 for LCDM, reducing
the uncertainties of the WMAP9-only constraints by ~50%. When we do not assume
flatness for LCDM, we obtain the curvature constraint
Omega_k=-0.010_{-0.015}^{+0.013} from the DLS+WMAP9 combination, which however
is not well constrained when WMAP9 is used alone. The dark energy equation of
state parameter w is tightly constrained when Baryonic Acoustic Oscillation
(BAO) data are added, yielding w=-1.02_{-0.09}^{+0.10} with the DLS+WMAP9+BAO
joint probe. The addition of supernova constraints further tightens the
parameter to w=-1.03+-0.03. Our joint constraints are fully consistent with the
final Planck results and also the predictions of a LCDM universe.Comment: Accepted for publication in Ap
The faint-galaxy hosts of gamma-ray bursts
The observed redshifts and magnitudes of the host galaxies of gamma-ray
bursts (GRBs) are compared with the predictions of three basic GRB models, in
which the comoving rate density of GRBs is (1) proportional to the cosmic star
formation rate density, (2) proportional to the total integrated stellar
density and (3) constant. All three models make the assumption that at every
epoch the probability of a GRB occuring in a galaxy is proportional to that
galaxy's broad-band luminosity. No assumption is made that GRBs are standard
candles or even that their luminosity function is narrow. All three rate
density models are consistent with the observed GRB host galaxies to date,
although model (2) is slightly disfavored relative to the others. Models (1)
and (3) make very similar predictions for host galaxy magnitude and redshift
distributions; these models will be probably not be distinguished without
measurements of host-galaxy star-formation rates. The fraction of host galaxies
fainter than 28 mag may constrain the faint end of the galaxy luminosity
function at high redshift, or, if the fraction is observed to be low, may
suggest that the bursters are expelled from low-luminosity hosts. In all
models, the probability of finding a z<0.008 GRB among a sample of 11 GRBs is
less than 10^(-4), strongly suggesting that GRB 980425, if associated with
supernova 1998bw, represents a distinct class of GRBs.Comment: 7 pages, ApJ in press, revised to incorporate yet more new and
revised observational result
CP Nonconservation in at the Tevatron
The reaction is found to be rather rich in exhibiting
several different types of CP asymmetries. The spin of the top quark plays an
important role. Asymmetries are related to form factors arising from radiative
corrections of the production vertex due to non-standard physics. As
illustrations, effects are studied in two Higgs Doublet Models and in
Supersymmetric Models; asymmetries up to a few percent may be possible.Comment: 14 pages, 3 figures. Note: replaced due to minor problems that
appeared on some postscript previewers. No change in conten
Features and flaws of a contact interaction treatment of the kaon
Elastic and semileptonic transition form factors for the kaon and pion are
calculated using the leading-order in a global-symmetry-preserving truncation
of the Dyson-Schwinger equations and a momentum-independent form for the
associated kernels in the gap and Bethe-Salpeter equations. The computed form
factors are compared both with those obtained using the same truncation but an
interaction that preserves the one-loop renormalisation-group behaviour of QCD
and with data. The comparisons show that: in connection with observables
revealed by probes with |Q^2|<~ M^2, where M~0.4GeV is an infrared value of the
dressed-quark mass, results obtained using a symmetry-preserving regularisation
of the contact-interaction are not realistically distinguishable from those
produced by more sophisticated kernels; and available data on kaon form factors
do not extend into the domain whereupon one could distinguish between the
interactions. The situation is different if one includes the domain Q^2>M^2.
Thereupon, a fully consistent treatment of the contact interaction produces
form factors that are typically harder than those obtained with QCD
renormalisation-group-improved kernels. Amongst other things also described are
a Ward identity for the inhomogeneous scalar vertex, similarity between the
charge distribution of a dressed-u-quark in the K^+ and that of the
dressed-u-quark in the pi^+, and reflections upon the point whereat one might
begin to see perturbative behaviour in the pion form factor. Interpolations of
the form factors are provided, which should assist in working to chart the
interaction between light-quarks by explicating the impact on hadron properties
of differing assumptions about the behaviour of the Bethe-Salpeter kernel.Comment: 17 pages, 9 figures, 4 table
Reactome - a knowledgebase of human biological pathways
Pathway curation is a powerful tool for systematically associating gene products with functions. Reactome (www.reactome.org) is a manually curated human pathway knowledgebase describing a wide range of biological processes in a computationally accessible manner. The core unit of the Reactome data model is the Reaction, whose instances form a network of biological interactions through entities that are consumed, produced, or act as catalysts. Entities are distinguished by their molecular identities and cellular locations. Set objects allow grouping of related entities. Curation is based on communication between expert authors and staff curators, facilitated by freely available data entry tools. Manually curated data are subjected to quality control and peer review by a second expert. Reactome data are released quarterly. At release time, electronic orthology inference performed on human data produces reaction predictions in 22 species ranging from mouse to bacteria. Cross-references to a large number of publicly available databases are attached, providing multiple entry points into the database. The Reactome Mart allows query submission and data retrieval from Reactome and across other databases. The SkyPainter tool provides visualization and statistical analysis of user supplied data, e.g. from microarray experiments. Reactome data are freely available in a number of data formats (e.g. BioPax, SBML)
Spectrum of Neutral Helium in Strong Magnetic Fields
We present extensive and accurate calculations for the excited state spectrum
of spin-polarized neutral helium in a range of magnetic field strengths up to
G. Of considerable interest to models of magnetic white dwarf stellar
atmospheres, we also present results for the dipole strengths of the low lying
transitions among these states. Our methods rely on a systematically saturated
basis set approach to solving the Hartree--Fock self-consistent field
equations, combined with an ``exact'' stochastic method to estimate the
residual basis set truncation error and electron correlation effects. We also
discuss the applicability of the adiabatic approximation to strongly magnetized
multi-electron atoms.Comment: 19 pages, 7 figures, 10 table
- …
