102 research outputs found
SPIRE Map-Making Test Report
The photometer section of SPIRE is one of the key instruments on board of
Herschel. Its legacy depends very much on how well the scanmap observations
that it carried out during the Herschel mission can be converted to high
quality maps. In order to have a comprehensive assessment on the current status
of SPIRE map-making, as well as to provide guidance for future development of
the SPIRE scan-map data reduction pipeline, we carried out a test campaign on
SPIRE map-making. In this report, we present results of the tests in this
campaign.Comment: This document has an executive summary, 6 chapters, and 102 pages.
More information can be found at:
https://nhscsci.ipac.caltech.edu/sc/index.php/Spire/SPIREMap-MakingTest201
Remote climate forcing of decadal-scale regime shifts in Northwest Atlantic shelf ecosystems
Author Posting. © Association for the Sciences of Limnology and Oceanography, 2013. This article is posted here by permission of Association for the Sciences of Limnology and Oceanography for personal use, not for redistribution. The definitive version was published in Association for the Sciences of Limnology and Oceanography, doi:10.4319/lo.2013.58.3.0803.Decadal-scale regime shifts in Northwest Atlantic shelf ecosystems can be remotely forced by climate-associated atmosphere–ocean interactions in the North Atlantic and Arctic Ocean Basins. This remote climate forcing is mediated primarily by basin- and hemispheric-scale changes in ocean circulation. We review and synthesize results from process-oriented field studies and retrospective analyses of time-series data to document the linkages between climate, ocean circulation, and ecosystem dynamics. Bottom-up forcing associated with climate plays a prominent role in the dynamics of these ecosystems, comparable in importance to that of top-down forcing associated with commercial fishing. A broad perspective, one encompassing the effects of basin- and hemispheric-scale climate processes on marine ecosystems, will be critical to the sustainable management of marine living resources in the Northwest Atlantic.Funding for this research was provided by the National Science
Foundation as part of the Regional and Pan-Regional Synthesis
Phases of the U.S. Global Ocean Ecosystem (GLOBEC) Program
Friends or foes? migrants and sub-state nationalists in Europe
How do sub-state nationalists respond to the growing presence of cultural diversity in their ‘homelands’ resulting from migration? Sub-state nationalists in Europe, in ‘nations without states’ such as Catalonia and Scotland, have been challenging the traditional nation-state model for many decades. While the arguments in favour of autonomy or independence levelled by these movements have become more complex, sub-state nationalist movements remain grounded by their perceived national community that is distinct from the majority nation. Migration to the ‘homeland’ of a sub-state nation, then, presents a conundrum for sub-state elites that we label the ‘legitimation paradox’: too much internal diversity may undermine the claim to cultural distinctiveness. We engage with three common intervening variables thought to influence how sub-state nationalists confront the ‘legitimation paradox’: civic/ethnic nationalism, degree of political autonomy, and party competition. Our overarching argument is that none of these factors have a unidirectional or determinate effect on the sub-state nationalism-immigration nexus, which is why the nuanced case studies that comprise this Special Issue are worthwhile endeavours
Depression in adolescence and young adulthood: the difficulty to integrate motivational/emotional systems
Depression is presented as a multi-factorial bio-psycho-social expression that has evolved primarily as an effect of stressors related to the motivational/emotional systems that regulate the BrainMind in our relationship with conspecifics. These stressors may be caused by two sources of threat, firstly, the loss of bonding with the caregiver and later with a partner and/or group which relates to the SEPARATION (PANIC/GRIEF) system, secondly, social defeat as an expression of the social competition and social dominance. The sexual maturity drives the individual to social competition and social dominance, even if the latter often occurs before sexual maturity, e.g., chickens, dogs, non-human primates, and humans. Depression is an evolutionarily conserved mechanism in mammals to terminate both separation anxiety, so as to protect the vulnerable social brain from the consequences of prolonged separation anxiety, and the stress of social competition when social defeat is predictable. Adolescence and Young adulthood are particularly susceptible to these two types of threat because of human developmental characteristics that are summarized by the term neoteny. This refers to the slowing down of growth and development, resulting in both a prolonged period of dependence on a caring/protective adult and the persistence of juvenile characteristics throughout life. Therefore, neoteny makes the transition from childhood to sexual maturity more dramatic, making the integration of the SEPARATION (PANIC/GRIEF) system with the dynamics of social competition and dominance more stressful and a source of depression. Stress is an expression of the HPA-Hypothalamic-Pituitary-Adrenal axis that articulates with other systems, mainly the autonomic nervous system and the immune-inflammatory system. The latter is believed to be one of the most significant components in the dynamics of depressive processes, connected to the prodromes of its activation in childhood, under the pressure of environmental and relational stressors which can lead to learned helplessness. The recurrence of stressors makes it easier for the immune-inflammatory system to be activated in later life, which could make a significant contribution to the establishment of a depressive disease. The possible contribution of children's identification processes with their parents' depressive personalities through observational learning is considered
The role of anticipation and neuroticism in developmental stuttering
PurposePeople Who Stutter (PWS) are often characterized by the presence of cognitive-emotional issues, resulting in conditions such as social phobia and avoidance behaviors. Emotions have been demonstrated to have a role in modulating speech-motor systems. Thus, in PWS, emotion and cognition (i.e., higher levels of trait-stable-neuroticism-and contextual-anticipation-anxiety) could negatively influence speech-motor networks, resulting in an increased number of dysfluencies.MethodsTo test this hypothesis, we recruited 13 PWS who were matched to 13 Fluent Speakers (FS). Participants were all Italian speakers and completed the NEO-PI-3 scale to assess neuroticism, and the ASI-3 scale for anxiety sensitivity. Successively, participants considered 55 words (repeated two times) and 55 sentences, and completed a task in which they had to evaluate their anticipation of stuttering before reading them aloud. Anticipation scores, reading times, and frequency of stuttering were evaluated and used for analyses.ResultsFindings suggest that PWS mainly had higher social concern than the fluent speakers. Moreover, a tendency toward higher levels of neuroticism is evident. Linear regressions suggest that reading times in PWS (positively related to frequency of stuttering) may be mainly explained by stuttering anticipation scores and, secondarily, by neuroticism levels. Stuttering anticipation was also positively related to the recorded frequencies of dysfluencies.ConclusionStuttering anticipation and neuroticism may be useful indexes for predicting dysfluencies and speech behavior, in PWS. Surely, this may be related to long-life stuttering and adaptive/maladaptive compensation attempts. In every case, in a clinical context, this also suggests the importance of fully evaluating behavioral/emotional aspects of stuttering, to obtain a more complete picture of patients’ needs and “tailored”/multidisciplinary interventions
Recent Arctic climate change and its remote forcing of Northwest Atlantic shelf ecosystems
Author Posting. © The Oceanography Society, 2012. This article is posted here by permission of The Oceanography Society for personal use, not for redistribution. The definitive version was published in Oceanography 25, no. 3 (2012): 208-213, doi:10.5670/oceanog.2012.64.During recent decades, historically unprecedented changes have been observed in the Arctic as climate warming has increased precipitation, river discharge, and glacial as well as sea-ice melting. Additionally, shifts in the Arctic's atmospheric pressure field have altered surface winds, ocean circulation, and freshwater storage in the Beaufort Gyre. These processes have resulted in variable patterns of freshwater export from the Arctic Ocean, including the emergence of great salinity anomalies propagating throughout the North Atlantic. Here, we link these variable patterns of freshwater export from the Arctic Ocean to the regime shifts observed in Northwest Atlantic shelf ecosystems. Specifically, we hypothesize that the corresponding salinity anomalies, both negative and positive, alter the timing and extent of water-column stratification, thereby impacting the production and seasonal cycles of phytoplankton, zooplankton, and higher-trophic-level consumers. Should this hypothesis hold up to critical evaluation, it has the potential to fundamentally alter our current understanding of the processes forcing the dynamics of Northwest Atlantic shelf ecosystems.Funding for this research was provided
by the National Science Foundation as
part of the Regional and Pan-Regional
Synthesis Phases of the US Global Ocean
Ecosystem (GLOBEC) Program
In vivo catecholaminergic metabolism in the medial prefrontal cortex of ENU2 mice: an investigation of the cortical dopamine deficit in phenylketonuria
Recommended from our members
The Herschel-SPIRE Legacy Survey (HSLS): the scientific goals of a shallow and wide submillimeter imaging survey with SPIRE
A large sub-mm survey with Herschel will enable many exciting science opportunities, especially in an era of wide-field optical and radio surveys and high resolution cosmic microwave background experiments. The Herschel-SPIRE Legacy Survey (HSLS), will lead to imaging data over 4000 sq. degrees at 250, 350, and 500 micron. Major Goals of HSLS are: (a) produce a catalog of 2.5 to 3 million galaxies down to 26, 27 and 33 mJy (50% completeness; 5 sigma confusion noise) at 250, 350 and 500 micron, respectively, in the southern hemisphere (3000 sq. degrees) and in an equatorial strip (1000 sq. degrees), areas which have extensive multi-wavelength coverage and are easily accessible from ALMA. Two thirds of the of the sources are expected to be at z > 1, one third at z > 2 and about a 1000 at z > 5. (b) Remove point source confusion in secondary anisotropy studies with Planck and ground-based CMB data. (c) Find at least 1200 strongly lensed bright sub-mm sources leading to a 2% test of general relativity. (d) Identify 200 proto-cluster regions at z of 2 and perform an unbiased study of the environmental dependence of star formation. (e) Perform an unbiased survey for star formation and dust at high Galactic latitude and make a census of debris disks and dust around AGB stars and white dwarfs
Achievement of the Planetary Defense Investigations of the Double Asteroid Redirection Test (DART) Mission
NASA's Double Asteroid Redirection Test (DART) mission was the first to demonstrate asteroid deflection, and the mission's Level 1 requirements guided its planetary defense investigations. Here, we summarize DART's achievement of those requirements. On 2022 September 26, the DART spacecraft impacted Dimorphos, the secondary member of the Didymos near-Earth asteroid binary system, demonstrating an autonomously navigated kinetic impact into an asteroid with limited prior knowledge for planetary defense. Months of subsequent Earth-based observations showed that the binary orbital period was changed by –33.24 minutes, with two independent analysis methods each reporting a 1σ uncertainty of 1.4 s. Dynamical models determined that the momentum enhancement factor, β, resulting from DART's kinetic impact test is between 2.4 and 4.9, depending on the mass of Dimorphos, which remains the largest source of uncertainty. Over five dozen telescopes across the globe and in space, along with the Light Italian CubeSat for Imaging of Asteroids, have contributed to DART's investigations. These combined investigations have addressed topics related to the ejecta, dynamics, impact event, and properties of both asteroids in the binary system. A year following DART's successful impact into Dimorphos, the mission has achieved its planetary defense requirements, although work to further understand DART's kinetic impact test and the Didymos system will continue. In particular, ESA's Hera mission is planned to perform extensive measurements in 2027 during its rendezvous with the Didymos–Dimorphos system, building on DART to advance our knowledge and continue the ongoing international collaboration for planetary defense
Distinct patterns of Fos expression induced by systemic amphetamine in the striatal complex of C57BL/6JICo and DBA/2JICo inbred strains of mice
Mice from the inbred strains C57BL/6 and DBA/2 are characterized by striking differences in their behavioral response to addictive drugs. We used Fos expression as a tool to reveal strain differences in the postsynaptic effects of amphetamine (AMPH; 2.5 mg/kg) within the nucleus accumbens (NAc) (core and shell) and the dorsal caudate (dorsomedial and dorsolateral). AMPH stimulated Fos expression in all striatal regions of mice from both strains. However, while C57BL/6 showed a higher Fos response than DBA/2 mice in both NAc shell and core, the opposite was true for the dorsolateral caudate. The effects of AMPH were prevented by D1 blockade in all striatal regions of both strains and mimicked by the D1 agonist, SKF82958 (0.1 mg/kg), in both regions of the caudate and in the NAc shell, but not in the core. Our results suggest that the functional heterogeneity of the striatal complex is under genetic control and that this control may implicate DA transmission and corticostriatal interactions. (C) 2004 Elsevier B.V. All rights reserved
- …
