50 research outputs found

    Differential Eye Movements in Mild Traumatic Brain Injury vs. Normal Controls

    Get PDF
    Objective measures to diagnose and to monitor improvement of symptoms following mild traumatic brain injury (mTBI) are lacking. Computerized eye tracking has been advocated as a rapid, user friendly and field ready technique to meet this need. Eye tracking data collected via a head mounted, video-based binocular eye tracker was used to examine saccades, fixations and smooth pursuit movement in 60 military Service Members with post concussive syndrome (PCS) and 26 asymptomatic control subjects in an effort to determine if eye movement differences could be found and quantified. The diagnosis of mTBI was confirmed by the study physiatrist’s history, physical examination, and a review of any medical records. Results demonstrated that subjects with symptomatic mTBI had statistically larger position errors, smaller saccadic amplitudes, smaller predicted peak velocities, smaller peak accelerations, and longer durations. Subjects with symptomatic mTBI were also less likely to follow a target movement (less primary saccades). In general, symptomatic mTBI tracked the stepwise moving targets less accurately, revealing possible brain dysfunction. A reliable, standardized protocol that appears to differentiate mTBI from normals was developed for use in future research. This investigation represents a step toward objective identification of those with PCS. Future studies focused on increasing the specificity of eye movement differences in those with PCS are needed

    Effects of hyperbaric oxygen on eye tracking abnormalities in males after mild traumatic brain injury

    Get PDF
    The effects of hyperbaric oxygen (HBO2) on eye movement abnormalities in 60 military servicemembers with at least one mild traumatic brain injury (mTBI) from combat were examined in a single-center, randomized, double-blind, sham-controlled, prospective study at the Naval Medicine Operational Training Center. During the 10 wk of the study, each subject was delivered a series of 40, once a day, hyperbaric chamber compressions at a pressure of 2.0 atmospheres absolute (ATA). At each session, subjects breathed one of three preassigned oxygen fractions (10.5%, 75%, or 100%) for 1 h, resulting in an oxygen exposure equivalent to breathing either surface air, 100% oxygen at 1.5 ATA, or 100% oxygen at 2.0 ATA, respectively. Using a standardized, validated, computerized eye tracking protocol, fixation, saccades, and smooth pursuit eye movements were measured just prior to intervention and immediately postintervention. Between- and within-groups testing of pre- and postintervention means revealed no significant differences on eye movement abnormalities and no significant main effect for HBO2 at either 1.5 ATA or 2.0 ATA equivalent compared with the sham-control. This study demonstrated that neither 1.5 nor 2.0 ATA equivalent HBO2 had an effect on postconcussive eye movement abnormalities after mTBI when compared with a sham-control

    Post-acute Brain Injury Urinary Signature: A New Resource for Molecular Diagnostics

    Get PDF
    Heterogeneity within brain injury presents a challenge to the development of informative molecular diagnostics. Recent studies show progress particularly in cerebrospinal fluid with biomarker assays targeting one or a few structural proteins. Protein-based assays in peripheral fluids, however, have been more challenging to develop in part due to restricted and intermittent barrier access. Further, a greater number of molecular variables may be required to inform on patient status given the multifactorial nature of brain injury. Presented is an alternative approach profiling peripheral fluid for a class of small metabolic by-products rendered by ongoing brain pathobiology. Urine specimens were collected for head trauma subjects upon admission to acute brain injury rehabilitation and nontraumatized matched controls. An innovative data-independent mass spectrometry approach was employed for reproducible molecular quantification across osmolarity-normalized samples. The postacute human traumatic brain injury urinary signature encompassed 2,476 discriminant variables reproducibly measured in specimens for subject classification. Multiple sub-profiles were then discerned in correlation with injury severity per Glasgow Comma Scale and behavioral and neurocognitive function per Patient Competency Rating Scale and Frontal Systems Behavioral Scale. Identified peptide constituents were enriched for outgrowth and guidance, extracellular matrix and post-synaptic density proteins, which were reflective of ongoing post-acute neuroplastic processes demonstrating pathobiological relevance. Taken together, these findings support further development of diagnostics based on brain injury urinary signatures using either combinatorial quantitative models or patternrecognition methods. Particularly, these findings espouse assay development to address unmet diagnostic and theragnostic needs in brain injury rehabilitative medicine

    Perspectives on Primary Blast Injury of the Brain: Translational Insights Into Non-inertial Low-Intensity Blast Injury

    Get PDF
    Most traumatic brain injuries (TBIs) during military deployment or training are clinically “mild” and frequently caused by non-impact blast exposures. Experimental models were developed to reproduce the biological consequences of high-intensity blasts causing moderate to severe brain injuries. However, the pathophysiological mechanisms of low-intensity blast (LIB)-induced neurological deficits have been understudied. This review provides perspectives on primary blast-induced mild TBI models and discusses translational aspects of LIB exposures as defined by standardized physical parameters including overpressure, impulse, and shock wave velocity. Our mouse LIB-exposure model, which reproduces deployment-related scenarios of open-field blast (OFB), caused neurobehavioral changes, including reduced exploratory activities, elevated anxiety-like levels, impaired nesting behavior, and compromised spatial reference learning and memory. These functional impairments associate with subcellular and ultrastructural neuropathological changes, such as myelinated axonal damage, synaptic alterations, and mitochondrial abnormalities occurring in the absence of gross- or cellular damage. Biochemically, we observed dysfunctional mitochondrial pathways that led to elevated oxidative stress, impaired fission-fusion dynamics, diminished mitophagy, decreased oxidative phosphorylation, and compensated cell respiration-relevant enzyme activity. LIB also induced increased levels of total tau, phosphorylated tau, and amyloid β peptide, suggesting initiation of signaling cascades leading to neurodegeneration. We also compare translational aspects of OFB findings to alternative blast injury models. By scoping relevant recent research findings, we provide recommendations for future preclinical studies to better reflect military-operational and clinical realities. Overall, better alignment of preclinical models with clinical observations and experience related to military injuries will facilitate development of more precise diagnosis, clinical evaluation, treatment, and rehabilitation

    Geriatric Interdisciplinary Team Training

    Get PDF
    Educational Objectives 1. To demonstrate the importance of training health care professionals in inter-disciplinary teamwork and geriatric health issues. 2. To increase one’s knowledge of the roles and responsibilities of the various disciplines involved in interdisciplinary teamwork

    Comparative Analysis of Cervical Spine Management in a Subset of Severe Traumatic Brain Injury Cases Using Computer Simulation

    Get PDF
    BACKGROUND: No randomized control trial to date has studied the use of cervical spine management strategies in cases of severe traumatic brain injury (TBI) at risk for cervical spine instability solely due to damaged ligaments. A computer algorithm is used to decide between four cervical spine management strategies. A model assumption is that the emergency room evaluation shows no spinal deficit and a computerized tomogram of the cervical spine excludes the possibility of fracture of cervical vertebrae. The study's goal is to determine cervical spine management strategies that maximize brain injury functional survival while minimizing quadriplegia. METHODS/FINDINGS: The severity of TBI is categorized as unstable, high risk and stable based on intracranial hypertension, hypoxemia, hypotension, early ventilator associated pneumonia, admission Glasgow Coma Scale (GCS) and age. Complications resulting from cervical spine management are simulated using three decision trees. Each case starts with an amount of primary and secondary brain injury and ends as a functional survivor, severely brain injured, quadriplegic or dead. Cervical spine instability is studied with one-way and two-way sensitivity analyses providing rankings of cervical spine management strategies for probabilities of management complications based on QALYs. Early collar removal received more QALYs than the alternative strategies in most arrangements of these comparisons. A limitation of the model is the absence of testing against an independent data set. CONCLUSIONS: When clinical logic and components of cervical spine management are systematically altered, changes that improve health outcomes are identified. In the absence of controlled clinical studies, the results of this comparative computer assessment show that early collar removal is preferred over a wide range of realistic inputs for this subset of traumatic brain injury. Future research is needed on identifying factors in projecting awakening from coma and the role of delirium in these cases

    Biomarkers for Severity of Spinal Cord Injury in the Cerebrospinal Fluid of Rats

    Get PDF
    One of the major challenges in management of spinal cord injury (SCI) is that the assessment of injury severity is often imprecise. Identification of reliable, easily quantifiable biomarkers that delineate the severity of the initial injury and that have prognostic value for the degree of functional recovery would significantly aid the clinician in the choice of potential treatments. To find such biomarkers we performed quantitative liquid chromatography-mass spectrometry (LC-MS/MS) analyses of cerebrospinal fluid (CSF) collected from rats 24 h after either a moderate or severe SCI. We identified a panel of 42 putative biomarkers of SCI, 10 of which represent potential biomarkers of SCI severity. Three of the candidate biomarkers, Ywhaz, Itih4, and Gpx3 were also validated by Western blot in a biological replicate of the injury. The putative biomarkers identified in this study may potentially be a valuable tool in the assessment of the extent of spinal cord damage

    Introduction

    No full text

    Geriatric Shoulder Pain

    No full text
    corecore