24 research outputs found

    Effect of Osmolytes on the Binding of EGR1 Transcription Factor to DNA

    Get PDF
    ABSTRACT: Osmolytes play a key role in maintaining protein stabilit

    The NuSTAR

    Full text link

    Energetic coupling along an allosteric communication channel drives the binding of Jun-Fos heterodimeric transcription factor to DNA

    No full text
    Although allostery plays a central role in driving protein-DNA interactions, the physical basis of such cooperative behavior remains poorly understood. In the present study, using isothermal titration calorimetry in conjunction with site-directed mutagenesis, we provide evidence that an intricate network of energetically-coupled residues within the basic regions of the Jun-Fos heterodimeric transcription factor accounts for its allosteric binding to DNA. Remarkably, energetic coupling is prevalent in residues that are both close in space, as well as residues distant in space, implicating the role of both short- and long-range cooperative interactions in driving the assembly of this key protein-DNA interaction. Unexpectedly, many of the energetically-coupled residues involved in orchestrating such a cooperative network of interactions are poorly conserved across other members of the basic zipper family, emphasizing the importance of basic residues in dictating the specificity of basic zipper-DNA interactions. Collectively, our thermodynamic analysis maps an allosteric communication channel driving a key protein-DNA interaction central to cellular functions in health and disease

    Structural and thermodynamic consequences of the replacement of zinc with environmental metals on estrogen receptor α–DNA interactions

    No full text
    Estrogen receptor α (ERα) acts as a transcription factor by virtue of the ability of its DNA‐binding (DB) domain, comprised of a tandem pair of zinc fingers, to recognize the estrogen response element within the promoters of target genes. Herein, using an array of biophysical methods, we probe the structural consequences of the replacement of zinc within the DB domain of ERα with various environmental metals and their effects on the thermodynamics of binding to DNA. Our data reveal that whereas the DB domain reconstituted with divalent ions of zinc, cadmium, mercury, and cobalt binds to DNA with affinities in the nanomolar range, divalent ions of barium, copper, iron, lead, manganese, nickel, and tin are unable to regenerate DB domain with DNA‐binding potential, although they can compete with zinc for coordinating the cysteine ligands within the zinc fingers. We also show that the metal‐free DB domain is a homodimer in solution and that the binding of various metals only results in subtle secondary and tertiary structural changes, implying that metal coordination may only be essential for binding to DNA. Collectively, our findings provide mechanistic insights into how environmental metals may modulate the physiological function of a key nuclear receptor involved in mediating a plethora of cellular functions central to human health and disease. Copyright © 2011 John Wiley & Sons, Ltd

    Ligand Binding and Membrane Insertion Compete with Oligomerization of the BclXL Apoptotic Repressor

    No full text
    B-cell lymphoma extra large (BclXL) apoptotic repressor plays a central role in determining the fate of cells to live or die during physiological processes such as embryonic development and tissue homeostasis. Herein, using a myriad of biophysical techniques, we provide evidence that ligand binding and membrane insertion compete with oligomerization of BclXL in solution. Of particular importance is the observation that such oligomerization is driven by the intermolecular binding of its C-terminal transmembrane (TM) domain to the canonical hydrophobic groove in a domain-swapped trans fashion, whereby the TM domain of one monomer occupies the canonical hydrophobic groove within the other monomer and vice versa. Binding of BH3 ligands to the canonical hydrophobic groove displaces the TM domain in a competitive manner, allowing BclXL to dissociate into monomers upon hetero-association. Remarkably, spontaneous insertion of BclXL into DMPC/DHPC (1,2-dimyristoyl-sn-glycero-3-phosphocholine/1,2-dihexanoyl-sn-glycero-3-phosphocholine) bicelles results in a dramatic conformational change such that it can no longer recognize the BH3 ligands in what has come to be known as the “hit-and-run” mechanism. Collectively, our data suggest that oligomerization of a key apoptotic repressor serves as an allosteric switch that fine-tunes its ligand binding and membrane insertion pertinent to the regulation of apoptotic machinery. [Display omitted] ► BclXL oligomerizes in solution. ► BclXL oligomerization is driven by the C-terminal TM domain through domain swapping. ► Binding of BH3 ligands triggers the dissociation of BclXL oligomers into monomers. ► Membrane insertion of BclXL is coupled with displacement of BH3 ligands

    Discovery and Biological Evaluation of Potent and Selective N-Methylene Saccharin-Derived Inhibitors for Rhomboid Intramembrane Proteases

    No full text
    Rhomboids are intramembrane serine proteases and belong to the group of structurally and biochemically most comprehensively characterized membrane proteins. They are highly conserved and ubiquitously distributed in all kingdoms of life and function in a wide range of biological processes, including epidermal growth factor signaling, mitochondrial dynamics, and apoptosis. Importantly, rhomboids have been associated with multiple diseases, including Parkinson's disease, type 2 diabetes, and malaria. However, despite a thorough understanding of many structural and functional aspects of rhomboids, potent and selective inhibitors of these intramembrane proteases are still not available. In this study, we describe the computer-based rational design, chemical synthesis, and biological evaluation of novel N-methylene saccharin-based rhomboid protease inhibitors. Saccharin inhibitors displayed inhibitory potency in the submicromolar range, effectiveness against rhomboids both in vitro and in live Escherichia coli cells, and substantially improved selectivity against human serine hydrolases compared to those of previously known rhomboid inhibitors. Consequently, N-methylene saccharins are promising new templates for the development of rhomboid inhibitors, providing novel tools for probing rhomboid functions in physiology and disease.status: publishe
    corecore