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ABSTRACT:

Osmolytes play a key role in maintaining protein stability

and mediating macromolecular interactions within the

intracellular environment of the cell. Herein, we show

that osmolytes such as glycerol, sucrose, and polyethylene

glycol 400 (PEG400) mitigate the binding of early growth

response (protein) 1 (EGR1) transcription factor to DNA

in a differential manner. Thus, while physiological con-

centrations of glycerol only moderately reduce the binding

affinity, addition of sucrose and PEG400 is concomitant

with a loss in the binding affinity by an order of magni-

tude. This salient observation suggests that EGR1 is most

likely subject to conformational equilibrium and that the

osmolytes exert their effect via favorable interactions with

the unliganded conformation. Consistent with this

notion, our analysis reveals that while EGR1 displays

rather high structural stability in complex with DNA, the

unliganded conformation becomes significantly destabi-

lized in solution. In particular, while liganded EGR1

adopts a well-defined arc-like architecture, the unli-

ganded protein samples a comparatively large conforma-

tional space between two distinct states that periodically

interconvert between an elongated rod-like shape and an

arc-like conformation on a submicrosecond time scale.

Consequently, the ability of osmolytes to favorably inter-

act with the unliganded conformation so as to stabilize it

could account for the negative effect of osmotic stress on

EGR1–DNA interaction observed here. Taken together,

our study sheds new light on the role of osmolytes in mod-

ulating a key protein–DNA interaction. VC 2014 Wiley

Periodicals, Inc. Biopolymers 103: 74–87, 2015.
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INTRODUCTION

O
smolytes are small organic molecules that are natu-

rally found within the intracellular environment of

living organisms, where they exert protective func-

tions against extreme environmental conditions and

osmotic stress.1 Examples include amino acids and

their derivatives (such as glycine, proline, and taurine), poly-

ols and sugars (such as glycerol, sucrose, and trehalose), and

methylamines [such as trimethylglycine (betaine) (TMG),

N-methylyglycine (sarcosine) (NMG), and trimethylamine

N-oxide (TMAO)].2,3 In particular, osmolytes play a key role

in maintaining cellular homeostasis by virtue of their ability

to not only regulate cell volume but also stabilize and protect

macromolecules from the physical stress and denaturing

conditions inherent to life.4–12 More importantly, osmolytes

are also believed to displace water from interacting surfaces,
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binding clefts, active sites and other cavities found within

macromolecules and, in so doing, aid ligand binding to pro-

teins and enhance enzymatic activity. In general, such dehy-

dration of molecular surfaces positively correlates with the

ability of many osmolytes to promote folding of proteins

and augment protein stability through their unfavorable

interactions with the unfolded state.13–17 However, destabi-

lizing effects of osmolytes on protein structure have also

been recently noted.18–21

In an effort to further our understanding of the role of

osmolytes in mediating macromolecular functions, we under-

took the present study on the binding of human early growth

response (protein) 1 (EGR1) transcription factor, also known

as Zif268, to its cognate DNA. Briefly, EGR1 is constructed on

the classical TA-DB modular design, where the TA is the N-

terminal transactivation domain and DB is the C-terminal

DNA-binding domain.22–24 Upon activation in response to

extracellular stimuli—such as hormones, neurotransmitters,

and growth factors—EGR1 binds via its DB domain to the

promoters of target genes containing the GCGTGGGCG con-

sensus motif, referred to hereinafter as Zif268 response element

(ZRE), in a sequence-dependent manner.25,26 The resulting

EGR1–DNA interaction facilitates the TA domain to recruit a

diverse array of transcriptional co-regulators to cognate DNA

promoters and, in so doing, plays a key role in modulating the

transcriptional machinery. Importantly, EGR1 couples extrac-

ellular stimuli to changes in gene expression responsible for a

myriad of cellular activities ranging from cell growth and pro-

liferation to apoptosis and oncogenic transformation.27–30 It

should be noted here that the DB domain of EGR1 is com-

prised of three tandem copies of C2H2-type zinc fingers (ZF),

designated herein ZFI, ZFII and ZFIII, which come together in

space to assemble into an arc-like architecture that snugly fits

into the major grooves of DNA (Figure 1). Of particular note

is the observation that the solvent-accessible surface of the DB

domain is bolstered by electrostatic polarization, with the inner

face of the arc harboring an overall positive charge, while the

outer rim is largely neutral. Such electrostatic polarization of

the DB domain is not surprising given its role as a transcrip-

tion factor—however, its arc-like conformation does not bode

well for its structural integrity in isolation. Simply put, while

the positively charged inner face appears to be a prerequisite

for the ability of DB domain to establish a stable interaction

with the negatively charged DNA, the rather highly constrained

arc-like architecture will in all probability undergo some sort

of structural rearrangement in the absence of DNA so as to

minimize electrostatic repulsions between the three tandem

zinc fingers. Given that the zinc fingers within the DB domain

are held together by flexible “hinges,” such conformational

transition will not only be a thermodynamic necessity but also

FIGURE 1 Electrostatic surface potential map derived from the structural model of the DB

domain of EGR1 in complex with ZRE duplex. The relative location of three tandem zinc fingers

(denoted ZFI, ZFII, and ZFIII) is indicated on the composite molecular surface of the DB domain.

Note that three different orientations of the DB domain, related by a 90�-clockwise rotation about

the vertical axis in successive order from left to right, are shown for the inquisitive eye. The blue

and red colors, respectively, denote the density of positive and negative charges, while the apolar

and polar surfaces are indicated by white/gray color on the molecular surface. The ZRE duplex is

displayed as a “stick” model and colored yellow.
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dynamically feasible. Conversely speaking, the DB domain of

EGR1 must experience a reverse conformational switching

upon binding to DNA.

In light of the above-mentioned conformational equilibrium,

we hypothesize that the osmolytes favorably interact with the

unliganded conformation of EGR1 and, in so doing, tightly

modulate the EGR1–DNA interaction by virtue of their ability to

stabilize the unliganded protein relative to the liganded state. To

test our hypothesis, we have employed here various biophysical

methods to investigate the effect of natural osmolytes glycerol

and sucrose as well as a widely used synthetic osmolyte polyethyl-

ene glycol (PEG) 400 (PEG400) on the binding of DB domain of

EGR1 to DNA. Our analysis shows that these osmolytes mitigate

the binding of EGR1 to DNA in a differential manner in agree-

ment with our hypothesis. We discuss these findings in light of

the ability of EGR1 to undergo conformational equilibrium.

MATERIALS AND METHODS

Protein Preparation
The DB domain (residues 331–430) of human EGR1 was cloned into

pET30 bacterial expression vector with an N-terminal His-tag using

Novagen ligation-independent cloning technology as described previ-

ously.31 The recombinant protein was subsequently expressed in Esch-

erichia coli BL21*(DE3) bacterial strain and purified on a Ni-NTA

affinity column followed by size-exclusion chromatography (SEC)

using standard procedures.31 Final yield was typically between 5 and

10 mg protein of apparent homogeneity per liter of bacterial culture.

Protein concentration was spectrophotometrically determined on the

basis of an extinction coefficient of 12,865 M21cm21 calculated using

the online software ProtParam at ExPasy Server.32

DNA Synthesis
15-mer DNA oligos containing the ZRE consensus site

(GCGTGGGCG) were commercially obtained from Sigma Genosys.

The complete nucleotide sequence of the sense and antisense oligos

constituting the ZRE duplex is shown below:

50-ataGCGTGGGCGttt-30

30-tatCGCACCCGCaaa-50

Oligo concentrations were determined spectrophotometrically on

the basis of their extinction co-efficients derived from their nucleo-

tide sequences using the online software OligoAnalyzer 3.1. Equimo-

lar amounts of sense and antisense oligos were mixed together and

heated at 95�C for 10 min and then allowed to cool to room temper-

ature to obtain double-stranded DNA (dsDNA)-annealed oligos

(ZRE duplex).

ITC Measurements
Isothermal titration calorimetry (ITC) experiments were per-

formed on a TA Nano-ITC instrument. Briefly, the DB domain of

EGR1 and the ZRE duplex were dialyzed in 50 mM Sodium phos-

phate and 5 mM b-mercaptoethanol containing varying concen-

trations of glycerol, sucrose, or PEG400 at pH 7.0. All experiments

were initiated by injecting 25 3 10 ml aliquots of 100–200 mM of

ZRE duplex from the syringe into the calorimetric cell containing

0.95 ml of 10–20 mM of DB domain solution at 25�C. The change

in thermal power as a function of each injection was automatically

recorded using the integrated NanoAnalyze software. The raw data

were further integrated to yield binding isotherms of heat release

per injection as a function of molar ratio of ZRE duplex to DB

domain. The heats of mixing and dilution were subtracted from

the heat of binding per injection by carrying out a control experi-

ment in which the same buffer in the calorimetric cell was titrated

against the ZRE duplex in an identical manner. To determine the

equilibrium dissociation constant (Kd) and the enthalpy change

(DH�) associated with the binding of DB domain to DNA in the

absence and presence of varying concentrations of osmolytes, the

binding isotherms were iteratively fit to a built-in one-site model

by nonlinear least squares regression analysis using the integrated

NanoAnalyze software as described previously.31,33 The free energy

change (DG�) upon binding was calculated from the relationship:

DG�5RT lnKd (1)

where R is the universal molar gas constant (1.99 cal/mol/K) and T is

the absolute temperature (298 K). The entropic contribution (TDS�)
to the free energy of binding was calculated from the relationship:

TDS�5DH�2DG� (2)

where DH� and DG� are as defined above.

Circular Dichroism
Circular dichroism (CD) measurements were conducted on a

thermostatically-controlled Jasco J-815 spectropolarimeter. Briefly,

samples of DB domain of EGR1 and ZRE duplex were individually

prepared in 50 mM Sodium phosphate buffer containing varying con-

centrations of glycerol, sucrose, and PEG400 at pH 7.0. For the DB

domain, far-UV spectral measurements were conducted on 10 mM of

protein in the 195–255 nm wavelength range at 25�C. For the ZRE

duplex, UV spectral measurements were conducted on 10 mM of

dsDNA oligo in the 200–320 nm wavelength range at 25�C. All data

were collected using a quartz cuvette with a 2-mm pathlength and

recorded with a slit bandwidth of 2 nm at a scan rate of 10 nm/min

and normalized against reference spectra to remove the background

contribution of buffer. Each spectral dataset represents an average of

four scans acquired at 0.1 nm intervals. For thermal scans of the DB

domain, the spectral intensity at a wavelength of 222 nm ([h222]) was

monitored in the temperature range 20–90�C at a scan rate of 1�C/

min. All data were converted to mean ellipticity, [h], as a function of

wavelength (k) of electromagnetic radiation using the equation:

½h� 5 ð105DeÞ=cl� deg:cm2:dmol21
�

(3)

where De is the observed ellipticity in mdeg, c is the protein concen-

tration in mM, and l is the cuvette pathlength in cm.

Molecular Modeling
Molecular modeling (MM) was employed to build a structural model

of the DB domain of EGR1 in complex with the 15-mer ZRE duplex
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using the corresponding crystal structure determined by Pavletich and

Pabo26 in the MODELLER software34 as described earlier.31 A total of

100 structural models were calculated and the structure with the low-

est energy, as judged by the MODELLER Objective Function, was

selected for further analysis. The electrostatic surface potential map of

the structural model was generated using MOLMOL.35 The unli-

ganded structural model of DB domain was generated simply by strip-

ping away atomic coordinates of DNA from the liganded protein. It

was assumed that the DB domain underwent no structural change

upon binding to DNA in a rigid body fashion (an assumption that

would eventually prove to be incorrect but it nonetheless did serve the

desired purpose).

Molecular Dynamics
Molecular dynamics (MD) simulations on the structural models of

the DB domain of EGR1 bound to DNA (liganded) and in the

absence of DNA (unliganded) were performed with the GROMACS

software36,37 using the integrated AMBER99SB-ILDN force field.38,39

The modeled structures of the liganded and unliganded proteins were

each centered in a cubic box and explicitly hydrated with a water layer

that extended 10 Å (box size) from the protein surface along each

orthogonal direction using the extended simple point charge water

model.40,41 Next, the hydrated structures were energy-minimized with

the steepest descent algorithm prior to equilibration under the NPT

ensemble conditions, wherein the number of atoms (N), pressure (P),

and temperature (T) within the system were kept constant. The

Particle-Mesh Ewald method was employed to compute long-range

electrostatic interactions with a spherical cutoff of 10 Å and a grid

space of 1.6 Å with a fourth order interpolation.42 The Linear Con-

straint Solver algorithm was used to restrain bond lengths.43 All MD

simulations were performed at 310 K under periodic boundary condi-

tions, so as to mimic the bulk solvent effect, using the standard “md”

leap-frog integrator to solve Newton’s equations of motion with a

time step of 2 fs. For the final MD production runs, data were col-

lected every ns over a sub-ms time scale. All MD simulations were per-

formed on a Linux workstation using parallel computing at the high-

performance computing facility within the Center for Computational

Science of the University of Miami. Structural snapshots taken at vari-

ous intervals during the course of MD simulations were rendered

using RIBBONS.44

RESULTS AND DISCUSSION

Osmolytes Negatively Regulate the EGR1–DNA
Interaction

To understand the effect of osmolytes on EGR1–DNA interac-

tion, we measured the binding of DB domain of EGR1 to ZRE

duplex as a function of increasing concentrations of glycerol,

sucrose, and PEG400 using ITC. Representative ITC data and

binding curves are shown in Figures 2 and 3, while detailed

thermodynamics are presented in Tables I and II. Our analysis

shows that increasing concentration of osmolytes results in an

exponential decrease in the binding affinity, albeit in a differen-

tial manner. Thus, while glycerol displays a moderate effect

with less than five-fold reduction in binding affinity even when

its concentration reaches up to 1000 mM (Figure 3a and

Table I), addition of sucrose is concomitant with a drop in

affinity by an order of magnitude at a concentration of

FIGURE 2 Representative ITC isotherms for the binding of ZRE duplex to DB domain of EGR1

at sucrose concentrations of 0 mM (a), 200 mM (b), and 400 mM (c). The upper panels show raw

ITC data expressed as change in thermal power with respect to time over the period of titration. In

the lower panels, change in molar heat is expressed as a function of molar ratio of ZRE duplex to

DB domain. The red solid lines in the lower panels show the fit of data to a one-site binding model

using the integrated NanoAnalyze software as described previously.31,33
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400 mM (Figure 3b and Table II). In remarkable contrast,

PEG400 can achieve a similar feat at only half the concentra-

tion of sucrose (Figure 3c and Table III).

Osmolytes are generally believed to stabilize macromolecu-

lar conformations and the osmotic stress is expected to aid

ligand binding by virtue of its ability to displace water from

interacting surfaces.13–17 The fact that the osmolytes employed

here exert an opposite effect on EGR1–DNA interaction

strongly argues that they unfavorably interact with EGR1–

DNA complex so as to shift the equilibrium in a direction

which favors the unliganded conformations. On the other

hand, the differential effect of these osmolytes on the binding

may be attributed to their ability to differentially interact with

the protein and/or DNA and/or due to their differential

osmotic effect as a result of their distinct size and chemistry.

Thus, unlike the polyol functionality of glycerol and sucrose,

PEG400 is constructed on a polyether backbone. On the other

hand, the relatively small size of glycerol (92 g/mol) compared

to sucrose (342 g/mol) and PEG400 (400 g/mol) could account

for its rather low osmotic potential. Despite their comparable

molar mass, the higher osmotic potential of PEG400 suggests

that the polyethers are more powerful osmolytes than polyols

of comparable molecular size. Additionally, the rather elon-

gated polyether backbone of PEG400 may be better suited to

access small cavities and crevices within macromolecules com-

pared to the less accommodating heterocyclic rings of sucrose.

Thus, the three-dimensional conformation of osmolytes likely

presents an equally important challenge in gauging their

osmotic potential and their ability to specifically interact with

macromolecules. It is also important to note that the ability of

FIGURE 3 Effect of varying concentrations of glycerol (a), sucrose (b), and PEG400 (c) on the

apparent equilibrium dissociation constant (Kd) associated with the binding of ZRE duplex to DB

domain of EGR1. In all panels, the red solid lines represent exponential fits to data points. The

error bars were calculated from at least three independent measurements to one standard

deviation.

Table I Thermodynamic Parameters for the Binding of DB Domain of EGR1 to DNA as a Function of Glycerol Concentration at pH

7.0 and 25�C

[Glycerol] (mM) Kd (nM) DH� (kcal.mol21) TDS� (kcal.mol21) DG� (kcal.mol21)

0 255 6 25 226.93 6 0.63 217.92 6 0.57 29.01 6 0.06

250 379 6 50 226.29 6 0.54 217.52 6 0.46 28.77 6 0.08

500 545 6 59 227.2 6 0.85 218.65 6 0.78 28.56 6 0.06

750 790 6 96 228.33 6 0.88 219.99 6 0.81 28.34 6 0.07

1000 1217 6 97 229.18 6 0.63 221.10 6 0.67 28.08 6 0.05

The binding stoichiometries to the fits agreed to within 610%. Errors were calculated from at least three independent measurements. All errors are given

to one standard deviation.
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osmolytes to interact with macromolecules is dependent upon

the strength of the cohesive force between the osmolyte and

the water solvent.45–48 In light of our data presented above, it

is thus conceivable that the cohesive forces of osmolytes with

water decrease in the order PEG400< sucrose< glycerol and

that this reciprocally correlates with their ability to interact

with the protein and/or DNA. In other words, the differential

ability of osmolytes to mitigate the binding of DB domain to

DNA is most probably due to their differential osmophobic

effects—the extent to which the osmolytes are excluded from

the immediate vicinity of protein surface.49,50

Osmolytes Employ Distinct Thermodynamic

Mechanisms to Modulate the Binding of EGR1 to
DNA
To shed light on how the reduction in binding affinity of DB

domain of EGR1 to DNA upon the addition of osmolytes cor-

relates with the contribution of underlying enthalpic (DH�)

and entropic (TDS�) forces to the overall free energy (DG�),

we constructed various thermodynamic plots (Figure 4). It is

evident from such analysis that the osmolytes modulate bind-

ing in a thermodynamically distinct manner. Thus, addition of

increasing amounts of glycerol results in an increase in the

favorable gain of DH� (Figure 4a). However, this favorable

enthalpic gain is to a large extent offset by a corresponding

unfavorable gain in TDS� term. On the other hand, DH� term

becomes less favorable while TDS� term experiences an oppo-

site trend with increasing concentrations of sucrose (Figure

4b). This behavior is somewhat more exaggerated in the case

of PEG400 (Figure 4c), where favorable DH� term undergoes

substantial loss with increasing osmolyte concentration while

TDS� more or less mirrors an opposite trend. Simply put, the

reduction in unfavorable entropic penalty with increasing con-

centration of PEG400 appears to counteract the loss of favor-

able enthalpy.

As noted above, one simple interpretation of these differen-

tial thermodynamics of EGR1–DNA interaction in the pres-

ence of various osmolytes could be ascribed to their ability to

differentially interact with the protein and/or DNA due to their

differential cohesive forces with water as well as due to their

differential osmophobic effects.45–50 Regardless of the precise

physical basis of how these osmolytes interact with the macro-

molecules, it is clear that the loss or gain of favorable DH� is

by and large compensated by an opposite trend in TDS�. How-

ever, unlike many macromolecular interactions,51–55 such

enthalpy–entropy compensation is not fully obeyed here and

thus does not completely eliminate the unfavorable energetic

contributions of osmolytes to DG�. Indeed, such partial break-

down in DH�2 TDS� compensation results in DG linearly

decreasing with increasing concentration of osmolytes, thereby

Table II Thermodynamic Parameters for the Binding of DB Domain of EGR1 to DNA as a Function of Sucrose Concentration at pH

7.0 and 25�C

[Sucrose] (mM) Kd (nM) DH� (kcal.mol21) TDS� (kcal.mol21) DG� (kcal.mol21)

0 255 6 25 226.93 6 0.63 217.92 6 0.57 29.01 6 0.06

100 524 6 75 225.93 6 0.36 217.37 6 0.44 28.58 6 0.09

200 864 6 98 225.28 6 0.46 216.99 6 0.52 28.28 6 0.07

300 1413 6 172 225.37 6 0.32 217.38 6 0.39 28.00 6 0.07

400 2571 6 273 225.22 6 0.51 217.58 6 0.57 27.63 6 0.06

The binding stoichiometries to the fits agreed to within 610%. Errors were calculated from at least three independent measurements. All errors are given

to one standard deviation.

Table III Thermodynamic Parameters for the Binding of DB Domain of EGR1 to DNA as a Function of PEG400 Concentration at pH

7.0 and 25�C

[PEG400] (mM) Kd (nM) DH� (kcal.mol21) TDS� (kcal.mol21) DG� (kcal.mol21)

0 255 6 25 226.93 6 0.63 217.92 6 0.57 29.01 6 0.06

50 520 6 70 224.16 6 0.24 215.58 6 0.32 28.58 6 0.08

100 925 6 81 222.88 6 0.33 214.57 6 0.18 28.24 6 0.05

150 1423 6 119 222.68 6 0.30 214.69 6 0.35 27.99 6 0.05

200 2533 6 131 222.95 6 0.19 215.31 6 0.16 27.64 6 0.03

The binding stoichiometries to the fits agreed to within 610%. Errors were calculated from at least three independent measurements. All errors are given

to one standard deviation.
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FIGURE 4 Effect of increasing concentrations of glycerol (a), sucrose (b), and PEG400 (c) on

enthalpic (DH�) and entropic (TDS�) contributions to the free energy (DG�) accompanying the

binding of ZRE duplex to DB domain of EGR1. In the top and middle panels, the solid lines are

used to connect data points for clarity. In the bottom panels, the red solid lines represent linear fits

to data points. The error bars were calculated from at least three independent measurements to one

standard deviation.

FIGURE 5 Far-UV CD analysis of DB domain of EGR1 in the absence of osmolytes (black) and

pre-equilibrated with 1000 mM glycerol (red), 400 mM sucrose (green), and 200 mM PEG400

(blue). (a) Representative far-UV spectra at 25�C. (b) Representative melting curves over the tem-

perature (T) range 20–100�C expressed in terms of the mean ellipticity observed at a wavelength of

222 nm, [h222]. The solid lines through each dataset represent nonlinear least-squares fits to a two-

state model using the ORIGIN software. The values determined for the melting transition (Tm)

from these fits under each condition are indicated in the corresponding parenthesis.
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accounting for the apparent loss in binding noted above

(Tables (I–III)).

Osmolytes Apparently Interact with the DB Domain
of EGR1 but Not Its Cognate DNA

In an effort to understand how osmolytes mitigate binding of

EGR1 to DNA, we next analyzed the effect of glycerol, sucrose,

and PEG400 on the secondary structure and stability of DB

domain using far-UV CD analysis (Figure 5). Our data show

that the far-UV spectral features of DB domain are largely char-

acterized by a negative band centered around 208 nm with a

shoulder at 222 nm due to a mixture of a-helix and b-sheet in

agreement with the ab-fold of the DB domain of EGR1 (Figure

5a). Importantly, the addition of osmolytes appears to perturb

the spectral features of DB domain. Thus, the intensity of the

208-nm band along with the 222-nm shoulder undergoes appre-

ciable enhancement in the presence of all three osmolytes. Addi-

tionally, the 208-nm band experiences a slight red shift in the

presence of sucrose. Together, these observations suggest that the

osmolytes stabilize the secondary structure of DB domain to a

certain degree, presumably by virtue of their ability to favorably

interact with protein backbone atoms.56 Importantly, the fact

that sucrose changes the shape of the spectrum may also imply

that it may perturbs the secondary structure of the protein.

Next, to directly probe the effect of various osmolytes on the

thermal stability of DB domain, we probed the dependence of

mean ellipticity observed at a wavelength of 222nm, [h222], in

the presence of various osmolytes over the temperature range

20–90�C using far-UV CD (Figure 5b). Surprisingly, our ther-

mal scans suggest that the DB domain displays a melting tem-

perature (Tm) of around 53�C and that the osmolytes

apparently have little or negligible effect on Tm. This salient

observation suggests that while osmolytes may stabilize the sec-

ondary structure of DB domain, this does not translate to any

notable change in its overall thermal stability. It is noteworthy

that the ability of osmolytes to stabilize protein structure results

from the osmophobic effect—the exclusion of osmolytes from

the immediate vicinity of protein surface.49,50 Accordingly, the

fact that the osmolytes do not appear to aid thermal stability of

DB domain suggests that they stabilize the secondary structure

of the unliganded state via favorable interactions. Strikingly,

this scenario is in sharp contrast to the ability of osmolytes to

promote folding and augment protein stability through their

unfavorable interactions with the unfolded state.13–17 It should

however be noted that the relationship between protein struc-

ture and stability is of highly subtle nature and the latter is

determined by factors other than structure alone. In other

words, isostructure does not necessarily equate to isostability.

Thus, for example, two proteins with similar thermal stability

may harbor substantially different structures and vice versa.

Since osmolytes are generally known to destabilize DNA

duplexes,57,58 we also tested the extent to which glycerol,

sucrose and PEG400 may perturb the double-helical character

of ZRE duplex using CD analysis (Figure 6). Our data indicate

that the ZRE duplex exhibits spectral features characteristic of

a right-handed double-stranded B-DNA with a negative band

FIGURE 6 Representative CD spectra of ZRE duplex in the absence of osmolytes (black) and pre-

equilibrated with varying concentrations of glycerol (a), sucrose (b), and PEG400 (c) as indicated.
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centered around 250 nm flanked between positive bands cen-

tered around 220 and 270 nm. It should be noted here that

while the 220-nm band arises from secondary structural DNA

features, the 270-nm band probes the three-dimensional con-

formation of DNA such as bending and curvature. Impor-

tantly, the secondary and tertiary structure of ZRE duplex by

and large appears to be unaffected in the presence of increasing

concentrations of all three osmolytes as monitored by the lack

of any notable changes in the shift or intensity of spectral

bands (Figures 6a–6c). This strongly argues that the osmolytes

employed in this study have little or negligible stabilizing or

destabilizing effect on ZRE duplex.

DB Domain of EGR1 Becomes Structurally
Destabilized in the Absence of DNA
Although osmolytes do not seem to have any tangible effect on

the overall thermal stability of DB domain of EGR1 (Figure

5b), it is nonetheless conceivable that their interaction with the

protein—as evidenced by their ability to buttress its secondary

structure (Figure 5a)—somehow negatively modulates EGR1–

DNA interaction. In particular, the DB domain of EGR1 may

be subject to conformational equilibrium such that it fluctuates

between multiple conformations in the absence of DNA and

undergoes equilibrium shift to a conformation that best fits

DNA as noted earlier (Figure 1). Accordingly, the ability of

osmolytes to differentially interact with protein conformations

that do not best fit DNA could account for the both negative

osmotic effect observed here as well as the ability of various

osmolytes to buttress the secondary structure of DB domain

without altering its overall stability. In order to assess the

extent of such conformational space available to the DB

domain, we next conducted MD analysis on the protein bound

to DNA (liganded) and in the absence of DNA (unliganded)

on a sub-ms timescale (Figure 7). Our analysis shows that the

liganded DB domain rapidly reaches structural equilibrium

FIGURE 7 Structural stability of EGR1 as probed through MD simulations conducted on the

structural models of DB domain bound to DNA (liganded) and in the absence of DNA (unli-

ganded). (a) Root mean square deviation (RMSD) of backbone atoms (N, Ca, and C) within each

simulated structure relative to the initial modeled structure of liganded (top panel) and unliganded

(bottom panel) protein as a function of simulation time. Note that the overall RMSD of the DB

domain (black) is deconvoluted into its three constituent zinc fingers: ZFI (green), ZFII (yellow),

and ZFIII (blue). (b) Root mean square fluctuation (RMSF) of backbone atoms (N, Ca, and C)

averaged over the entire course of corresponding trajectory of liganded (top panel) and unliganded

(bottom panel) protein as a function of residue number. Note that the vertical boxes demarcate the

boundaries of ZFI, ZFII, and ZFIII within the DB domain. (c) Solvent-accessible surface area

(SASA) of all atoms within each simulated structure relative to the initial modeled structure of

liganded (top panel) and unliganded (bottom panel) protein as a function of simulation time.
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with a root mean square deviation (RMSD) for the backbone

atoms of around 2 Å (Figure 7a). In remarkable contrast, the

unliganded protein does not appear to attain a structural equi-

librium over the course of entire simulation and continues to

display rather large deviations or oscillations comprised of per-

iodic peaks reaching as high as 14 Å and troughs touching as

low as 4 Å. Importantly, the motional behavior of the unli-

ganded protein resembles a wave-like form with a period in

the order of hundreds of ns, which corresponds to a resonance

frequency in the MHz regime, accompanied by an amplitude

approaching 5 Å. Such resonant behavior is indicative of the

fact that the DB domain samples a rather large conformational

space between two well-defined states that occupy the energy

minima at each extreme of this structural landscape (corre-

sponding to the peaks and troughs on the trajectory).

In an attempt to unearth the origin of such dynamic

behavior, we deconvoluted the overall RMSD of the DB

domain into its three constituent zinc fingers, namely ZFI,

ZFII, and ZFIII (Figure 7a). In the case of liganded protein,

ZFI and ZFII appear to be relatively stable, while ZFIII

largely resembles the dynamics of the DB domain. This sug-

gests that the structural deviation of liganded DB domain

mentioned above is largely attributable to ZFIII. On the

other hand, while ZFI appears to be relatively stable in the

unliganded protein, ZFII and ZFIII are much less stable,

implying that they predominantly contribute to the dynam-

ics of the unliganded conformation noted above. In partic-

ular, the role of zinc fingers in imparting structural

flexibility upon the unliganded DB domain appears to be

polarized with the mobility of the N-terminal ZFI being

FIGURE 8 Dynamic plasticity of EGR1 as probed through MD simulations conducted on the

structural model of DB domain in the absence of DNA (unliganded). Shown are structural snap-

shots taken at 0, 245, 545, and 801 ns during the course of an MD simulation. The three tandem

zinc fingers constituting the DB domain are colored green (ZFI), yellow (ZFII), and blue (ZFIII)

and the coordinating zinc divalent ions have been eliminated for clarity. Note that the DNA (col-

ored gray) bound to the 0-ns snapshot is stripped away at the start of MD simulation and is only

shown here for comparison.
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relatively muted, while the central ZFII becoming structur-

ally destabilized and such instability particularly bearing

heavily upon ZFIII. Consistent with these observations, our

root mean square fluctuation analysis reveals that while the

backbone dynamics of most residues within the unliganded

protein are significantly perturbed relative to their counter-

parts in the liganded protein, the C-terminal residues span-

ning ZFIII display somewhat similar dynamic profile in

both cases (Figure 7b). This salient observation implies that

the C-terminal region of DB domain harbors intrinsic flexi-

bility, which fires off a domino-like effect on rest of the pro-

tein when DNA is pulled out of the union. Next, we also

compared the extent of solvent-accessible surface area

(SASA) in both the liganded and unliganded forms of DB

domain of EGR1 as a function of simulation time (Figure

7c). Unsurprisingly, residues within the rod-like unliganded

protein on average appear to be more solvated than their

counterparts in the liganded form. This observation thus

clearly suggests that the osmolytes ought to enhance rather

than mitigate the binding of DB domain of EGR1 to DNA

by virtue of their ability to displace water from the unli-

ganded state. However, the fact that the opposite trend is

observed here supports the notion that the osmolytes likely

engage in specific interactions with the unliganded confor-

mation of EGR1 and mitigate its ability to bind DNA.

DB Domain of EGR1 Undergoes Equilibrium Shift

Upon Binding to DNA
Our data presented above suggest that the unliganded DB

domain of EGR1 is in equilibrium exchange between two dis-

tinct states that periodically interconvert on a time scale in the

order of hundreds of ns. The contemporary view of ligand

binding holds that in the absence of ligand, structurally flexible

proteins sample multiple conformations, one of which best fits

the ligand.59–61 In this so-called equilibrium shift model, ligand

binding to this preformed conformation simply shifts the equi-

librium in its direction in lieu of the ligand directly inducing

structural changes necessary for its accommodation within the

host protein. Could one of the two distinct states of the DB

domain observed in our MD simulations represent the pre-

formed conformation proposed in the equilibrium shift model?

If so, what is the physical nature of the other conformation that

it is in equilibrium exchange with?

To address these tantalizing issues, we took structural snap-

shots of the unliganded DB domain at simulation times of 245

ns (peak), 545 ns (trough), and 801 ns (peak), corresponding

to intermittent peaks and troughs observed in the RMSD tra-

jectory (Figure 7a), and compared these interconverting species

to the initial or starting structure from which the DNA has

been forcibly stripped away (0 ns) during the course of simula-

tion cycle. As shown in Figure 8, the three tandem zinc fingers

(ZFI, ZFII, and ZFIII) come together and impart upon the DB

domain an arc-like conformation best suited to allow them to

tightly snuggle into the major grooves of DNA in a cooperative

manner. However, in the 245-ns snapshot (corresponding to a

peak in the RMSD trajectory), ZFIII appears to flip out by

more than 90� about an axis through ZFI and ZFII such that

the resulting collinear orientation of the three zinc fingers

allows the DB domain to adopt a rod-like shape. Such confor-

mational change would clearly favor dissociation of the protein

from DNA and vice versa. It is also noteworthy that in addition

to collinear rearrangement of the three zinc fingers within the

DB domain, the C-terminal a-helices of ZFII (aII) and ZFIII

(aIII) undergo partial unwinding resulting in the loss of helic-

ity by about one turn. Thus, the DB domain not only experien-

ces tertiary but also secondary structural changes in the

absence of DNA. It is thus conceivable that the osmolytes facil-

itate the folding of these partially unstructured a-helices in the

unliganded conformation but, in so doing, also hinder its abil-

ity to undergo exchange to an arc-like conformation best

suited to bind DNA (Figure 5a).

Most significantly, the 545-ns snapshot (corresponding

to a trough in the RMSD trajectory) reveals that the confor-

mation adopted by the DB domain at this time point dur-

ing the course of simulation very much resembles that of

the liganded protein bound to DNA (0-ns snapshot). On

the other hand, the 801-ns snapshot reveals that the unli-

ganded protein becomes even more extended than the rod-

like shape observed at 245 ns. Together, these data strongly

argue that the unliganded DB domain is in equilibrium

exchange between two well-defined states, an extended rod-

like state and an arc-like preformed conformation that best

fits the ligand as proposed in the equilibrium shift

model.59–61 In light of these observations, we believe that

the osmolytes favorably interact with the rod-like unli-

ganded state and thereby render it less favorable to undergo

conformational exchange to an arc-like conformation best

suited to fit DNA. Importantly, such a scenario would not

only account for the ability of osmolytes to mitigate the

binding of EGR1 to DNA but could also explain their abil-

ity to stabilize the secondary structure of the unliganded

protein without aiding its thermal stability as observed in

our CD measurements (Figure 5). Thus, for example, the

rod-like state of protein would offer maximal surface area

for the favorable interactions with osmolytes and the higher

the concentration of osmolytes the greater the population

of the rod-like state. In contrast, the rather arc-like confor-

mation that the protein adopts in the liganded state would

sterically hamper its interaction with osmolytes even

though such protein–osmolyte interactions may not
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necessarily be unfavorable. In this regard, the ease with which

osmolytes may be able to favorably interact with the rod-like

unliganded state would incur a thermodynamic penalty upon

their exclusion from the protein surface so as to enable the

binding of DNA. Comparison of SASA values for various

interconverting conformational states indeed further corrobo-

rate this notion (Figure 7c). More specifically, while SASA for

the rod-like state observed at 801 ns is calculated to be 7719

Å2, a much smaller value of 6835 Å2 is obtained for the

arc-like conformation best suited to fit DNA. In short, the

osmolytes likely shift the equilibrium in the direction of

the rod-like unliganded state that is poorly suited to fit

DNA and, in so doing, mitigate the EGR1–DNA interaction.

CONCLUSION
Addition of osmolytes to an aqueous solution of macromole-

cules introduces osmotic stress—a phenomenon that results in

molecular crowding leading to an increase in the effective con-

centration of all species but a decrease in their entropic free-

dom. Accordingly, the osmotic stress should in principle be

expected to favor macromolecular activities such as ligand

binding and enzymatic activity by virtue of not only augment-

ing the collisional probability between the interacting species

(kinetic advantage) but also through reduction of entropy of

free species so as to facilitate their association (thermodynamic

advantage). However, another important virtue of osmotic

stress is that it also displaces water from macromolecular surfa-

ces such that processes that involve the net release of water into

the bulk solvent will be favored, while those that involve net

uptake would be subject to inhibition.62–66 As a consequence,

water is believed to play an active role in mediating many mac-

romolecular interactions by virtue of its ability to shift confor-

mational exchange between distinct states through coupled

hydration–dehydration equilibria.67–69 Thus, hemoglobin

sequesters more than 50 waters upon loading oxygen,67 the

opening of ionic channel alamethicin is coupled to a net

uptake of 100 waters,70 and the pyrimidine biosynthesis path-

way workhorse aspartate transcarbamylase gulps over 200

waters upon substrate binding.71 On the other hand, binding

of TBP and CAP proteins to their cognate promoters results in

the expulsion of tens of waters,72,73 interaction of EcoR1 and

BamH1 restriction endonucleases with DNA ejects over 100

waters,74–76, the binding of lac repressor to its promoter is con-

comitant with the net release of over 200 waters,77 and hexoki-

nase may part company with as many as 300 waters when

called upon to phosphorylate glucose during the first step of

glycolysis.68,69

Notably, our analysis on EGR1–DNA interaction presented

here suggests that the rod-like unliganded protein is likely to

be more hydrated than the arc-like liganded conformation that

best fits DNA. Thus, it is unlikely that the reduction in the

binding of EGR1 to DNA in the presence of osmolytes could

be accounted in terms of the coupling of water uptake. On the

contrary, our study suggests that the osmolytes favorably inter-

act with the rod-like unliganded state and thereby render it less

favorable to undergo conformational exchange to an arc-like

state best suited to bind DNA. Indeed, preferential interactions

of osmolytes with proteins and their ability to shift conforma-

tional equilibria are well documented. For example, proline

binds to the folding intermediate of lysozyme so as to not only

promote its refolding but also prevent aggregation.78 Consist-

ent with this observation, proline along with other natural

osmolytes such as glycerol and heparin promote the refolding

of creatine kinase by virtue of their ability to favorably interact

with folding intermediates, thereby shifting the equilibrium in

the direction of the native state in lieu of protein aggregation.79

A similar effect of proline is also observed on P39A cellular

retinoic-acid binding protein.80 Other studies suggest that pro-

line at high concentration aids the solubility of proteins via

favorable interactions.81 On the other hand, the favorable

interaction of methylamines such as TMG, NMG, and TMAO

with monomeric conformations of serpins inhibits their

disease-causing polymerization.82 While osmolytes in general

prevent aggregation of globular proteins, they exhibit an oppo-

site effect on intrinsically disordered proteins (IDPs). Thus, for

example, the intrinsically disordered a-synuclein, a protein

implicated in the development of Parkinson’s disease, under-

goes aggregation into an heterogeneous ensemble of oligomers

and amyloid-like fibrils in the presence of a variety of osmo-

lytes.83–85 More importantly, such osmolyte-induced aggrega-

tion and fibrillation of a-synuclein has also been reported in

the case of several other IDPs such as the microtubule-

associated protein tau,86 S-carboxymethylated a-lactalbumin,
87 the prion protein,88 the glucagon hormone peptide,89 and

Alzheimer’s amyloid-b peptides.90–92

It is noteworthy that proteins under physiological condi-

tions do not usually adopt a well-defined state but rather an

ensemble of rapidly interconverting conformations primed to

quickly allow the protein to switch its function depending on

the nature of biological stimulus. Importantly, such conforma-

tional equilibria in proteins are highly sensitive to varying con-

centrations of osmolytes,93 which are believed to preferentially

bind to specific conformational states over others. In particu-

lar, it has been shown that osmolytes such as methylamines

modulate a highly cooperative structural transition in the

Hsp90 chaperone between an open and closed conformation

that only differ by a domain–domain interaction.94 It is strik-

ing to note that while Hsp90 adopts an additional ATP-bound

state, this conformation appears to be more or less resistant to
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varying concentrations of osmolytes. This suggests that the

preferential interactions of osmolytes with proteins may also

play a key role in maintaining their conformational heteroge-

neity in a manner akin to their ability to promote protein sta-

bility. It should also be noted here that the interaction of

osmolytes are not only restricted to water-soluble proteins. For

example, substrate binding triggers unfolding of the N-

terminal region of BtuB membrane transporter, while osmo-

lytes such as PEGs and methylamines inhibit such order–disor-

der transition by virtue of their ability to specifically interact

with the folded conformation.95,96 Notably, increasing the

molecular size of PEGs beyond about 2000 g/mol leads to little

or no further increase in the excluded volume of water in Btu,

implying that the larger osmolytes are preferentially excluded

from accessing specific cavities within the protein.

While precise mechanism of how osmolytes exert their such

a diverse array of effect on macromolecules remain largely

obscure, our demonstration that they negatively modulate

EGR1–DNA interaction bears important therapeutic implica-

tions. Thus, for example, osmolytes could be therapeutically

exploited to down-regulate the oncogenic potential of EGR1

and other related transcription factors. Indeed, the use of

osmolytes to hinder protein misfolding and aggregation has

been suggested to be an important therapeutic tool to alleviate

many pathological and neurodegenerative disorders.21 In sum,

our study not only provides new insights into the effect of

osmolytes on a key protein-DNA interaction but also warrants

further investigations into the role of osmolytes in regulating

the biological activity of transcription factors.
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