89 research outputs found

    Positive Counseling with College Students

    Get PDF
    College students face multiple challenges and can find college life to be overwhelming at times. In this paper, we examine how positive psychology, which embraces a strengths-based focus, has much to offer college students and their counselors. After providing an overview of positive psychology, we examine how positive psychology can be integrated into counseling generally and then more specifically into working with college students. We examine a number of different issues that college students face, and we offer different positive psychology techniques that have been found to be beneficial. Moreover, we provide a case study to demonstrate the benefits of taking a positive psychology approach to enhance counseling effectiveness. We also give attention to the potential benefits of taking a strengths-based approach to improving student retention and to how positive psychology can be applied to enhance the well-being of the counselor

    Augmented pain behavioural responses to intra-articular injection of nerve growth factor in two animal models of osteoarthritis

    Get PDF
    Acknowledgements The authors would like to thank Paul Millns for his technical assistance with tissue (dorsal root ganglia) collection. Competing interests None. Provenance and peer review Not commissioned; externally peer reviewedPeer reviewedPublisher PD

    Manganese-enhanced magnetic resonance imaging depicts brain activity in models of acute and chronic pain: a new window to study experimental spontaneous pain?

    Get PDF
    Application of functional imaging techniques to animal models is vital to understand pain mechanisms, but is often confounded by the need to limit movement artefacts with anaesthesia, and a focus on evoked responses rather than clinically relevant spontaneous pain and related hyperalgesia. The aim of the present study was to investigate the potential of manganese-enhanced magnetic resonance imaging (MEMRI) to measure neural responses during on-going pain that underpins hyperalgesia in pre-clinical models of nociception. As a proof of concept that MEMRI is sensitive to the neural activity of spontaneous, intermittent behaviour, we studied a separate positive control group undergoing a voluntary running wheel experiment. In the pain models, pain behaviour (weight bearing asymmetry and hindpaw withdrawal thresholds (PWTs)) was measured at baseline and following either intra-articular injection of nerve growth factor (NGF, 10 µg/50 µl; acute pain model, n=4 rats per group), or the chondrocyte toxin monosodium iodoacetate (MIA, 1 mg/50 µl; chronic model, n=8 rats per group), or control injection. Separate groups of rats underwent a voluntary wheel running protocol (n=8 rats per group). Rats were administered with paramagnetic ion Mn2+ as soluble MnCl2 over seven days (subcutaneous osmotic pump) to allow cumulative activity-dependent neural accumulation in the models of pain, or over a period of running. T1-weighted MR imaging at 7 T was performed under isoflurane anaesthesia using a receive-only rat head coil in combination with a 72 mm volume coil for excitation. The pain models resulted in weight bearing asymmetry (NGF: 20.0 ± 5.2%, MIA: 15 ± 3%), and a reduction in PWT in the MIA model (8.3 ± 1.5 g) on the final day of assessment before undergoing MR imaging. Voxel-wise and region-based analysis of MEMRI data did not identify group differences in T1 signal. However, MnCl2 accumulation in the VTA, right Ce amygdala, and left cingulate was negatively correlated with pain responses (greater differences in weight bearing), similarly MnCl2 accumulation was reduced in the VTA in line with hyperalgesia (lower PWTs), which suggests reduced regional activation as a result of the intensity and duration of pain experienced during the 7 days of MnCl2 exposure. Motor cortex T1-weighted signal increase was associated with the distance ran in the wheel running study, while no between group difference was seen. Our data suggest that on-going pain related signal changes identified using MEMRI offers a new window to study the neural underpinnings of spontaneous pain in rats

    Osteoprotegerin reduces the development of pain behaviour and joint pathology in a model of osteoarthritis

    Get PDF
    Acknowledgements: OPG-Fc was a kind gift from Amgen Ltd. Funding: This work was supported by Arthritis Research UK, grant number 18769Peer reviewedPublisher PD

    Targeting the D-series resolvin receptor system for the treatment of osteoarthritic pain

    Get PDF
    Objective: Pain is a major symptom of osteoarthritis (OA); current analgesics either do not offer adequate pain relief or are associated with serious side effects. Herein we have investigated the therapeutic potential of targeting the resolvin receptor system to modify OA pain and pathology. Methods: Gene expression of two resolvin receptors (ALX and ChemR23) was quantified in synovia and medial tibial plateau collected from patients at joint replacement for OA. Two models of OA joint pain were used for mechanistic studies. Gene expression in the periphery and CNS were quantified. Effects of exogenous administration of the D-series resolvin precursor 17(R)-hydroxy Docosahexaenoic Acid (17(R)-HDoHE on pain behaviour, joint pathology, spinal microglia and astroglyosis were quantified. Plasma levels of relevant lipids, resolvin D2, 17R-HDoHE and arachidonic acid was determined in rats using LC-MS-MS. Results: There was a positive correlation between resolvin receptor and IL6 expression in human OA synovia and medial tibial plateau. In the rat, synovia gene expression of ALX was positively correlated with IL1β, TNFα and COX2. Treatment with 17(R)-HDoHE reversed established pain behaviour in two models of OA pain, but not joint pathology. This was associated with a significant elevation in plasma levels of resolvin D2 and a significant reduction in astrogliosis in the spinal cord in the MIA model. Conclusion: Our preclinical data demonstrate robust analgesics effects of activating the D series resolvin pathways in two different animal models of OA. Our data support a predominant central mechanism of action in this clinically relevant model of OA pain

    The contribution of spinal glial cells to chronic pain behaviour in the monosodium iodoacetate model of osteoarthritic pain

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Clinical studies of osteoarthritis (OA) suggest central sensitization may contribute to the chronic pain experienced. This preclinical study used the monosodium iodoacetate (MIA) model of OA joint pain to investigate the potential contribution of spinal sensitization, in particular spinal glial cell activation, to pain behaviour in this model. Experimental OA was induced in the rat by the intra-articular injection of MIA and pain behaviour (change in weight bearing and distal allodynia) was assessed. Spinal cord microglia (Iba1 staining) and astrocyte (GFAP immunofluorescence) activation were measured at 7, 14 and 28 days post MIA-treatment. The effects of two known inhibitors of glial activation, nimesulide and minocycline, on pain behaviour and activation of microglia and astrocytes were assessed.</p> <p>Results</p> <p>Seven days following intra-articular injection of MIA, microglia in the ipsilateral spinal cord were activated (p < 0.05, compared to contralateral levels and compared to saline controls). Levels of activated microglia were significantly elevated at day 14 and 21 post MIA-injection. At day 28, microglia activation was significantly correlated with distal allodynia (p < 0.05). Ipsilateral spinal GFAP immunofluorescence was significantly (p < 0.01) increased at day 28, but not at earlier timepoints, in the MIA model, compared to saline controls. Repeated oral dosing (days 14-20) with nimesulide attenuated pain behaviour and the activation of microglia in the ipsilateral spinal cord at day 21. This dosing regimen also significantly attenuated distal allodynia (p < 0.001) and numbers of activated microglia (p < 0.05) and GFAP immunofluorescence (p < 0.001) one week later in MIA-treated rats, compared to vehicle-treated rats. Repeated administration of minocycline also significantly attenuated pain behaviour and reduced the number of activated microglia and decreased GFAP immunofluorescence in ipsilateral spinal cord of MIA treated rats.</p> <p>Conclusions</p> <p>Here we provide evidence for a contribution of spinal glial cells to pain behaviour, in particular distal allodynia, in this model of osteoarthritic pain. Our data suggest there is a potential role of glial cells in the central sensitization associated with OA, which may provide a novel analgesic target for the treatment of OA pain.</p

    Robust anti-nociceptive effects of MAG lipase inhibition in a model of osteoarthritis pain

    Get PDF
    BACKGROUND AND PURPOSE: Chronic pain is often a symptom of knee osteoarthritis (OA) for which current analgesics are either inadequate, or are associated with serious side effects. The endocannabinoid system may offer alternative targets for pain-relief. We evaluated the effects of a potent and selective MAG lipase inhibitor (MJN110) on OA pain behaviour, spinal mechanisms of action and joint histopathology in the rat. Experimental approach: Intra-articular injection of monosodium iodoacetate (MIA) models OA pain and mimics clinical joint pathology. Effects of MJN110 on MIA-induced weight bearing asymmetry and lowered paw withdrawal thresholds (PWTs), changes in spinal gene expression and brain levels of relevant lipids were determined. Key results: Acute MJN110 (5 mg·kg−1) significantly reversed MIA induced weight bearing asymmetry (MIA /vehicle: 68 ± 6g; MIA /MJN110: 35 ± 4g, p<0.05) and lowered ipsilateral PWTs (MIA /vehicle: 7 ± 0.8g; MIA /MJN110: 11 ± 0.6g, p<0.05), via both CB1 and CB2 receptors. Repeated treatment with MJN110 (5 mg·kg−1) resulted in anti-nociceptive tolerance. A lower dose of MJN110 (1 mg·kg−1) acutely inhibited pain behaviour, which was maintained for one week of repeated administration, but had no effect on joint histology. MJN110 significantly inhibited expression of MPGES1 (p<0.05) in the ipsilateral dorsal horn of the spinal cord of MIA rats, compared to vehicle treated MIA rats. Both doses of MJN110 significantly elevated brain levels of the endocannabinoid 2-AG. Conclusions and Implications: Our data support the further investigation of the therapeutic potential of MAG lipase inhibitors for the treatment of OA pain

    North: Volume Two

    Get PDF
    North Volume Two reflects our belief in photography as a relevant tool for exploring our ever-changing world. Whether in Preston, Liverpool, Berlin or Guangzhou the image-makers create a conversation with contemporary life as they endeavour to make their surroundings legible. In this second edition we continue North in the streets and spaces of the city. From contested sites of demolition, to new imaginaries formulated in the studio and in domestic, digital and social space, the volume is testament to how the urban endures as one of photography’s perennial objects of study. Like the first edition, We aim to highlight our commitment to everyday life as a meaningful arena for research and cultural production

    Anxiety enhances pain in a model of osteoarthritis and is associated with altered endogenous opioid function and reduced opioid analgesia

    Get PDF
    Introduction: Negative affect, including anxiety and depression, is prevalent in chronic pain states such as osteoarthritis (OA) and associated with greater use of opioid analgesics, potentially contributing to present and future opioid crises.Objectives: We tested the hypothesis that the interaction between anxiety, chronic pain, and opioid use results from altered endogenous opioid function.Methods: A genetic model of negative affect, the Wistar–Kyoto (WKY) rat, was combined with intra-articular injection of monosodium iodoacetate (MIA; 1 mg) to mimic clinical presentation. Effects of systemic morphine (0.5–3.5 mg·kg−1) on pain behaviour and spinal nociceptive neuronal activity were compared in WKY and normo-anxiety Wistar rats 3 weeks after MIA injection. Endogenous opioid function was probed by the blockade of opioid receptors (0.1–1 mg·kg−1 systemic naloxone), quantification of plasma β-endorphin, and expression and phosphorylation of spinal mu-opioid receptor (MOR).Results: Monosodium iodoacetate–treated WKY rats had enhanced OA-like pain, blunted morphine-induced analgesia, and greater mechanical hypersensitivity following systemic naloxone, compared with Wistar rats, and elevated plasma β-endorphin levels compared with saline-treated WKY controls. Increased MOR phosphorylation at the master site (serine residue 375) in the spinal cord dorsal horn of WKY rats with OA-like pain (P = 0.0312) indicated greater MOR desensitization.Conclusions: Reduced clinical analgesic efficacy of morphine was recapitulated in a model of high anxiety and OA-like pain, in which endogenous opioid tone was altered, and MOR function attenuated, in the absence of previous exogenous opioid ligand exposure. These findings shed new light on the mechanisms underlying the increased opioid analgesic use in high anxiety patients with chronic pain
    corecore