37 research outputs found

    Assessments of Pulmonary Macrophage Clearance Responses to Inhaled Particulates

    Get PDF
    An integrated bioassay program is being developed to evaluate the toxicity of inhaled particulate materials. The multi-disciplined approach combines studies on lung clearance mechanisms with pulmonary macrophage functional assessments based on cellular biology, biochemical and cytochemical evaluations on lung specimens from exposed animals. To validate this method, animals were exposed to asbestos, iron-treated asbestos, fiberglass, Mt. St. Helens ash or carbonyl iron particles. Deposition patterns, macrophage migration and phagocytosis were monitored in vivo at selected time periods after exposure. Our results showed that chemotactic factor generation by particles in vitro correlated with the corresponding macrophage recruitment responses in vivo. In addition, macrophage morphologic and functional characteristics were evaluated following exposures to aerosolized dusts. Our results suggest that scanning electron microscopy (SEM) techniques for investigating particle deposition and macrophage clearance provide an important component for evaluating the toxicity of inhaled particulate materials

    Occupational Exposure to Poorly Soluble Low Toxicity Particles and Cardiac Disease: A Look at Carbon Black and Titanium Dioxide

    Get PDF
    Environmental particulate exposure and the potential risk to people with various types of cardiac diseases, most notably cardiovascular disease, have aroused scientific and regulatory interest worldwide. Epidemiological studies have shown associations between exposure to airborne environmental particulate matter (PM) and mortality from cardiovascular disease (CVD). The associations reported, however, are complex and may not involve a direct role for PM, since air pollutants are diverse and highly correlated. This study examines the potential role of occupational exposure to two types of particles, namely, manufactured carbon black (CB) and titanium dioxide (TiO2), on the risk of cardiovascular disease. To address the risk of cardiovascular disease from exposure to carbon black and titanium dioxide, as reflective of poorly soluble low toxicity particles, we reviewed the published cohort mortality studies of occupational exposure to carbon black and titanium dioxide. Mortality studies of carbon black have been conducted in the United States, Germany, and the United Kingdom. Five mortality studies related to workers involved in the manufacture of titanium dioxide in the United States and Europe have also been conducted. In addition, a meta-analysis of the three-carbon black mortality studies was performed. In the random-effects meta-analysis, full cohort meta-SMRs were 1.01 (95% confidence interval (CI): 0.79–1.29) for heart disease; 1.02 (95% CI: 0.80–1.30) for ischemic heart disease; and 1.08 (95% CI: 0.74–1.59) for acute myocardial infarction (AMI) mortality. A small but imprecise increased AMI mortality risk was suggested for cumulative exposure by a meta-HR = 1.10 per 100 mg/m3-years (95% CI: 0.92–1.31) but not for lugged exposures, that is, for recent exposures. Results of five cohort mortality studies of titanium dioxide workers in the United States and Europe showed no excess in all heart disease or cardiovascular disease. In the most recent study in the United States, an internal analysis, that is, within the cohort itself, with no lag time, showed that the exposure group 15–35 mg/m3-years yielded a significantly increased risk for heart disease; however, there was no evidence of increasing risk with increasing exposure for any of the exposure categories. In contrast to environmental studies, the results of cohort mortality studies do not demonstrate that airborne occupational exposure to carbon black and titanium dioxide particulates increases cardiovascular disease mortality. The lack of a relationship between carbon black and titanium dioxide and CVD mortality suggests that the associations reported in air pollution studies may not be driven by the particulate component

    Анализ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² вибродиагностики ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΡ… станков

    Get PDF
    ЦСль Ρ€Π°Π±ΠΎΡ‚Ρ‹ - Π²Ρ‹Ρ€Π°Π±ΠΎΡ‚ΠΊΠ° Ρ€Π΅ΠΊΠΎΠΌΠ΅Π½Π΄Π°Ρ†ΠΈΠΉ ΠΏΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² вибродиагностики ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΡ… станков Π² ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅. ΠžΠ±ΡŠΠ΅ΠΊΡ‚ исслСдования - ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ ΠΈ комплСксы вибродиагностики ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΡ… станков. ΠŸΡ€Π΅Π΄ΠΌΠ΅Ρ‚ исслСдования – систСматизация ΠΈ ΠΎΠ±ΠΎΠ±Ρ‰Π΅Π½ΠΈΠ΅ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² вибродиагностики ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΡ… станков. ΠΠΊΡ‚ΡƒΠ°Π»ΡŒΠ½ΠΎΡΡ‚ΡŒ - отсутствиС простой для Ρ€Π΅Π°Π»ΠΈΠ·Π°Ρ†ΠΈΠΈ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠΈ виброиспытаний. Π’ процСссС Ρ€Π°Π±ΠΎΡ‚Ρ‹ Π±Ρ‹Π»ΠΈ рассмотрСны Ρ€Π°Π·Π»ΠΈΡ‡Π½Ρ‹Π΅ ΠΌΠ΅Ρ‚ΠΎΠ΄Ρ‹ вибродиагностики ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΡ… станков, сдСланы прСдлоТСния ΠΏΠΎ ΠΏΡ€ΠΈΠΌΠ΅Π½Π΅Π½ΠΈΡŽ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΎΠ² вибродиагностики ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΡ… станков Π² ΠΊΠ°ΠΆΠ΄ΠΎΠΉ ΠΊΠΎΠ½ΠΊΡ€Π΅Ρ‚Π½ΠΎΠΉ Π·Π°Π΄Π°Ρ‡Π΅, создана ΡƒΠ½ΠΈΠ²Π΅Ρ€ΡΠ°Π»ΡŒΠ½Π°Ρ ΠΌΠ΅Ρ‚ΠΎΠ΄ΠΈΠΊΠ° провСдСния вибродиагностики ΠΌΠ΅Ρ‚Π°Π»Π»ΠΎΡ€Π΅ΠΆΡƒΡ‰ΠΈΡ… станков диагностичСским комплСксом "ВиброрСгистратор-М2".The aim of the work is to develop recommendations on the application of vibration diagnostics methods for metal-cutting machine tools in a specific task. The object of research is methods and complexes of vibration diagnostics of metal cutting machines. The subject of the study is the systematization and generalization of methods of vibration diagnostics of metal-cutting machines. Actuality is the absence of a simple vibration testing technique. In the course of the work various methods of vibration diagnostics of metal cutting machines were considered, suggestions were made on the application of vibration diagnostics methods for metal cutting machines in each specific task, a universal technique for performing vibration diagnostics of metal cutting machines with the Vibroregistrator-M2

    Erratum to: In Memorian Thomas W. Hesterberg, PhD MBA (1950–2016)

    No full text

    Erratum to: In Memorian Thomas W. Hesterberg, PhD MBA (1950–2016)

    No full text

    Hazard and risk assessment strategies for nanoparticle exposures: how far have we come in the past 10 years? [version 1; referees: 2 approved]

    No full text
    Nanotechnology is an emerging, cross-disciplinary technology designed to create and synthesize new materials at the nanoscale (generally defined as a particle size range of ≀10-9 meters) to generate innovative or altered material properties. The particle properties can be modified to promote different and more flexible applications, resulting in consumer benefits, particularly in medical, cosmetic, and industrial applications. As this applied science matures and flourishes, concerns have arisen regarding potential health effects of exposures to untested materials, as many newly developed products have not been adequately evaluated. Indeed, it is necessary to ensure that societal and commercial advantages are not outweighed by potential human health or environmental disadvantages. Therefore, a variety of international planning activities or research efforts have been proposed or implemented, particularly in the European Union and United States, with the expectation that significant advances will be made in understanding potential hazards related to exposures in the occupational and/or consumer environments. One of the first conclusions reached regarding hazardous effects of nanoparticles stemmed from the findings of early pulmonary toxicology studies, suggesting that lung exposures to ultrafine particles were more toxic than those to larger, fine-sized particles of similar chemistry. This review documents some of the conceptual planning efforts, implementation strategies/activities, and research accomplishments over the past 10 years or so. It also highlights (in this author’s opinion) some shortcomings in the research efforts and accomplishments over the same duration. In general, much progress has been made in developing and implementing environmental, health, and safety research-based protocols for addressing nanosafety issues. However, challenges remain in adequately investigating health effects given 1) many different nanomaterial types, 2) various potential routes of exposure, 3) nanomaterial characterization issues, 4) limitations in research methodologies, such as time-course and dose-response issues, and 5) inadequate in vitro methodologies for in vivo standardized, guideline toxicity testing

    Biokinetics of engineered nano-TiO 2

    No full text

    Grouping of Poorly Soluble Low (Cyto)Toxic Particles: Example with 15 Selected Nanoparticles and A549 Human Lung Cells

    No full text
    Poorly soluble, low (cyto)toxic particles (PSLTs) are often regarded as one group, but it is important that these particles can be further differentiated based on their bioactivity. Currently, there are no biological endpoint based groupings for inhaled nanoparticles (NPs) that would allow us to subgroup PSLTs based on their mode of action. The aim of this study was to group NPs based on their cytotoxicity and by using the in vitro response of the endo-lysosomal system as a biological endpoint. The endo-lysosomal system is a main cellular loading site for NPs. An impaired endo-lysosomal system in alveolar type II cells may have serious adverse effects on the maintenance of pulmonary surfactant homeostasis. The 15 different NPs were tested with human lung adenocarcinoma (A549) cells. The highly soluble NPs were most cytotoxic. With respect to PSLTs, only three NPs increased the cellular load of acid and phospholipid rich organelles indicating particle biopersistence. All the rest PSLTs could be regarded as low hazardous. The presented in vitro test system could serve as a fast screening tool to group particles according to their ability to interfere with lung surfactant metabolism. We discuss the applicability of the suggested test system for bringing together substances with similar modes-of-action on lung epithelium. In addition, we discuss this approach as a benchmark test for the comparative assessment of biopersistence of PSLTs

    Grouping of poorly soluble low (cyto)toxic particles

    Full text link
    Poorly soluble, low (cyto)toxic particles (PSLTs) are often regarded as one group, but it is important that these particles can be further differentiated based on their bioactivity. Currently, there are no biological endpoint based groupings for inhaled nanoparticles (NPs) that would allow us to subgroup PSLTs based on their mode of action. The aim of this study was to group NPs based on their cytotoxicity and by using the in vitro response of the endo-lysosomal system as a biological endpoint. The endo-lysosomal system is a main cellular loading site for NPs. An impaired endo-lysosomal system in alveolar type II cells may have serious adverse effects on the maintenance of pulmonary surfactant homeostasis. The 15 different NPs were tested with human lung adenocarcinoma (A549) cells. The highly soluble NPs were most cytotoxic. With respect to PSLTs, only three NPs increased the cellular load of acid and phospholipid rich organelles indicating particle biopersistence. All the rest PSLTs could be regarded as low hazardous. The presented in vitro test system could serve as a fast screening tool to group particles according to their ability to interfere with lung surfactant metabolism. We discuss the applicability of the suggested test system for bringing together substances with similar modes-of-action on lung epithelium. In addition, we discuss this approach as a benchmark test for the comparative assessment of biopersistence of PSLTs
    corecore